Navarrina F., Casteleiro M., Colominas I.—” Numerical Analysis problems” Problems 3

NUMERICAL METHODS AND PROGRAMMING 2024/2025
Storage and handling of matrices (PROBLEMS 3)
1.— We want to calculate the matrix product K = LU where L is a lower triangular matrix and U

an upper triangular matrix, both of size n:

a) What is the shape of matrix K?
b
c

d

Design the minimum storage schemes for the three matrices.

Write a multiplication algorithm adapted to the above storage schemes.

N — —

Describe how does the computational cost grow (measured both in terms of the amount of
memory and in terms of the computational time required) as a function of the size of the
matrices. Compare it with that which would result from storing the complete matrices and
using a multiplication algorithm for full matrices.

Sol. 1.
l11 Uil U2 - Uln
lor oo U22 -+ U2n
K=LU, L= . U=
lnl ln2 to lnn Unmn

but it has to be considered that:

lim=0 if m>i
Upj =0 if m>j

Thus, the product can be obtained as:

minif}
kij = E lim Um; = E Lim U
m=1,n m=1

m <i, m<j

It can be generally observed that k;; # 0, since there is always a product that adds to element
Then K is a full matrix.
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b) We store:
L — Row major lower triangular
U — Column major upper triangular
K — Column major full
So that:
1
iy~ ol(pl)  with Il = =D s
(i1
uij ~ vu(lpu)  with  Ipu = ‘7(‘72) + i; i<y
kij ~ vk(lpk) with Ipk=(j —1)n+i
c) do j=1,n

1pk0=(j-1)*n
1pu0=(j*(j-1))/2
do i=1,n
1p10=(i*(i-1))/2
1pk=1pkO+i
vk (1pk)=0.
do m=1,min(i,j)
1pl=1pl0+m
1pu=lpuO+m
vk (1pk)=vk (1pk)+v1(1pl) *vu(lpu)
enddo
enddo
enddo

d) The previous algorithm needs:

1

1) Storage = n(n;—) terms for L
1

n(n;—) terms for U

n? terms for K

Total = 2n?+n = A(2n?+n) =~ A(2n?)

2) Computing time =
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e o [ ] [ ]
[ ]
(2(n — 1)+ 1) times [1 product and 1 addition] ~ :
[
— . -
- e LT
* [ ] [ ] [ ]
(2(n —2) + 1) times [2 products and 2 additions] ~ :
*
L * -
- -
*
(2(n —n) + 1) times [(n) products and (n) additions] ~ :
**
B x ok [ ] i

n

Total = > (2(n—d)+1)[ (d) “products” + (d) “additions” |

(2(n—d)+1) (2d) FPO (Floating Point Operations)

I
U
M: I

o
I

n

1
i 2d(2n+1) — > (2d)2> FPO = ((Qn +1)(n+1)n— 2(2n + 1)(n+ 1)n> FPO
d=1 d=1 3

3 2n3  3n2 n o2n3
FPO =T —+ —4+ =) =T| —
) G5+ 5) =1 (%)

If we would have used full matrices then:

3n? terms for L, U, K = A(3n?)
2n3 FPO to obtain K = T(2n3)

I
AA

1/3 in memory

Thus, it is saved approximately { 2/3 in computing time

2.— Repeat the previous problem when the matrices L and U have half-bandwidths [ and u respec-
tively, with | << n, and u << n.
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Sol. 2.

a) K = [kil;

however

So that:

Ly a2

Uilr U12
U22
> limUmg

K;j = Z LimUmg

m=1n

liy141

Lii—t liici41

Ul,u+1

U2,u+1

Uy +1,u+1

if m>1
if m>j

i—l<m<i
ju<m<j

)

ln,n—l ln,n—l—‘rl ln,n A
u]_u7]
Uj—u+1,j
Un—u,n
Uyj,5 Up—ut1n
Un,n

or m<i—I
or m<j—u

min{i, j}

Z limumj

m =max{i —,j —u,1}

Thus whenever min{i, j} < max{i—1[,j — u, 1} there will be no products adding terms to k;;.
Therefore, only coefficient k;; such that min{:, j} > max{i — [, j —u, 1} would be non-zero, a
priori, so thosethat ¢ > ¢ —1,i>j—u, j>1—1, j > j— u.

Since i > i — [l and j > j — u are always satisfied:
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i > j—wu = uper bandwidth (u)
j >i—1 = lower bandwidth (1)

k;; might be non-zero <= {

Then K is a banded matrix with lower bandwidth that of L and upper bandwidth that of U.

* o« o *
* * *
* * *
l
* * *
* * * *
K = * * * *
* * * *
* * * *
* * * u
* * *
L * * u

b) We store matrices L, U, K banded (by diagonals)

lij ~vl(lpl)  with Ipl=(j—i+ln+14 i—1<j<i
uij ~ vu(lpu) with Ipu = (j —i)n+i; j—u<i<j

i—l<j<i

kij ~ vk(lpk) with Ipk = (j —i+)n+i; {j—ugiéj

c) do j=1,n
do i=max(1l,j-u), min(n,j+1)
1pk=(j-i+1)*n+i
vk (1pk)=0.d+00
do k=max(i-1,j-u,1), min(i,j)
1pl=(k-i+1)*n+i
lpu=(j-k)*n+k
vk (1pk) =vk (1pk)+v1(1pl) *vu(lpu)
enddo
enddo
enddo

d) The algorithm requires:
1) Storage = n(l+1) elements for L

n(u+1) elements for U

n(l+1+u) elements for K

Total = 2n(l+14u)+n = A2n(l+1+u)+n) = A@2n(l+u+1,5))
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2) Computing time

The exact computation is difficult to obtain, however we know that [ << mn and u <<n

If we assume that, what happens on the central rows and columns is of application for the rest
(which is reasonable since the only irregular ones would be the (1 +1) first rows and the (1 + u)
last columns) then we can proceed as follows.

To obtain the (I + 1 4 u) elements of row i we need:

(1) product + (1) addition
(2) products + (2) additions

(min(l, u)+1) products + (min(l, u)+1) additions

(min(l, w)+1) products + (min(l, u)+1) additions

(2) products + (2) additions
(1) product + (1) addition

Therefore the number of operations per row is:

(l+1+wu—min(l,u)) 2(min(l,u) +1) OCF
2(max(l,u) + 1) (min(l,u) +1) OCF

2(+1)(u+1) OCF

So the total computing complexity will be approximately T'(2n(l + 1)(u + 1))

Remember that if full matrices were considered then:

3n? elements for L, U, K =— A(3n?)
2n® OCF to obtain K = T(2n3)

Thus, when | << n and uw << n the reduction in storage and computing time is very significant
(specially in time).

3.— Of the matrix L it is known that it is lower triangular and that all its elements are null except
for those located on the main diagonal (which are always nonzero) and those in the row « (which
in general will be nonzero, but not necessarily), this is:
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In order to obtain the matrix product A = LLT .

a) Is A going to be symmetric? And positive definite? Why?
b) What is the general shape of matrix A?

c¢) Develop the storage schemes that are considered the most suitable for the two matrices. As
matrix A is being computed, is it possible to store its coefficients in the place occupied by
the corresponding coefficients of the matrix L matrix to save memory space? Why?

d) Develop an algorithm suited to perform the matrix product with the storage schemes des-
cribed in the previous section.

e) How does the computational time necessary to obtain A grow as the size of the matrix
increases?

Sol. 3.
a) A= LLT with det(L) == H lu 7& 0 is
i=1
(1) Symmetric, because AT = (LLT)" = (LT)T LT = LL" = A
2) positive semidefinite, because v7 Av = v (LLT v =

(TL)(L™v) = (LTv)T (LTv) =w™w >0

wT w
3) positive definite, because v Av = 0 <= w = LTv =0 Ay — 0
b)
[ 141 ] [l la1 1
l22 l22 la2
_ T _
L= lal la2 laa L"= lOéOé
L lnn . L lnn _
Then
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e)

[ 13 li1laa
22 l2ala2

2
la—l,a—l lafl,aflla,ogfl

A=LL" = a
> IZ
=1

SYM. 12 a1

2
lnn |

Thus, every element of A is zero except for those at the main diagonal , at row « (lower part)
and at column « (upper part)

Since A is symmetric it is enough to store the lower part. In order to store L and the lower part
of A we only need two arrays of n + (o — 1) elements:

vl = (llla l22’ ) la—l,a—lu loc1> la?y laom loc-i—l,oz—i-l) ) lnn)

va = (a11> a2, -+, AGa—1,a—1, Gal, a2, " Gaay Gatl,a+ls " ann)

Yes it is possible to store A over L, although the elements of L (until the l,,) are necessary to
obtain some elements of A (for example, [1; is used to obtain a1; and aq1) therefore the order of
operations is important. We have to follow a specific order so the elements we need for further
calculations are not overwritten before.

doi=1,aa—1 do i=1,ia-1
Qi Zl?i ~ va(i) = v1(i) * v1(i)
Aoi = lii Lo ~ va(ia-1+i) = v1(i) * vl(ia-1+i)
enddo enddo
va(2*ia-1) = 0.d4+00
do k=1,ia
Qoo = 22:1 lik ~ va(2*ia-1) = va(2*ia-1) + vl(ia-1+k) * vl(ia-1+k)
enddo
dot=a+1,n do i=ia+1l,n
aﬁ::l% ~ va(ia-1+i) = vl(ia-1+i) * vl(ia-1+i)
enddo enddo

The number of floating point operations to obtain A is:

(n — 1) products

(v — 1) products

() products + («) additions
(

(

Total =

n + 2a — 2) products + (a) additions
n+3a—2) FPO = T(n+ (3a—2))

Therefore, the time complexity grows linearly with the size of the matrix
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4.— Of the matrices L and U it is known that they are lower and upper triangular respectively, and
that all their elements are null except for those located on the main diagonal, in the row a of L

and in the 8 column of U. This is:

[ 11 1 [ w1y u1g ]
l22 U2 u2p
I - la1 la2 loa U= Uao
lgp ugp
L lrm ] L Unn i

a) what is the general shape of the product matrix A = LU?

b) Design storage schemes suited for the three matrices

c) Write a specific algorithm including the storage schemes described for the matrix product.

Sol. 4.

a) It is a special case of product of two skyline matrices.
We know that A = LU shares the same row profile as L and the same column profile as U, so

the only non-zero elements of A will be:

a;;; t=1,...,n
aej; j=1,...,a—1
aig; 1=1,...,6—-1

The the resulting matrix of the product will have the following shape:

Casea<ff ~ A=

Casea=f ~~ A=

Casea>f ~ A=
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b) In order to store matrices L and U we need to arrays of (n+ (a—1)) and (n+ (8 — 1)) elements

respectively:
vl = (l].].a l225 ey la—l,a—ly loz17 la27 cey la,om la-i-].,OH—lu ey lnn)
vu = (UH, U2, - .., Up—-1,—1, U158, U248, ---, UBB, UG+1,8+1; - - -, unn)

To store matrix A we need a vector of (n+ (v — 1) + (8 — 1)) elements.

We may, for example, arrange the data as:

va = (alla a2, ..., Qpn, Aal, ---, aa,a—la alﬂ7 R aﬁ—l,ﬂ)

This problem can be solve similarly to the previous one.
We need to multiply LU and identify the values of the elements of A.
Considering the three possible cases (a < 3, « = 3, a > 3).

Finally, the elements l;;, ug; y a;; are substituted by their indexes according to the storage

scheme of the previous problem.

10



