
Navarrina F., Casteleiro M., Colominas I.–”Numerical Analysis problems” Problems 3

NUMERICAL METHODS AND PROGRAMMING 2024/2025

Storage and handling of matrices (PROBLEMS 3)

1.— We want to calculate the matrix product KKK = LLLUUU where LLL is a lower triangular matrix and UUU
an upper triangular matrix, both of size n:

a) What is the shape of matrix KKK?

b) Design the minimum storage schemes for the three matrices.

c) Write a multiplication algorithm adapted to the above storage schemes.

d) Describe how does the computational cost grow (measured both in terms of the amount of
memory and in terms of the computational time required) as a function of the size of the
matrices. Compare it with that which would result from storing the complete matrices and
using a multiplication algorithm for full matrices.

Sol. 1.

KKK = LLL UUU, LLL =


l11
l21 l22
...

...
. . .

ln1 ln2 · · · lnn

 , UUU =


u11 u12 · · · u1n

u22 · · · u2n
. . .

...
unn


a) The product of matrices can be expressed as:

KKK = [kij], kij =
n∑

m=1

limumj

but it has to be considered that:

lim = 0 if m > i
umj = 0 if m > j

Thus, the product can be obtained as:

kij =
∑

m = 1, n
m ≤ i, m ≤ j

lim umj =

min{i,j}∑
m=1

lim umj

It can be generally observed that kij 6= 0, since there is always a product that adds to element
kij

Then KKK is a full matrix.

1

Navarrina F., Casteleiro M., Colominas I.–”Numerical Analysis problems” Problems 3

b) We store:

LLL −→ Row major lower triangular
UUU −→ Column major upper triangular
KKK −→ Column major full

So that:

lij vl(lpl) with lpl =
i(i− 1)

2
+ j; j ≤ i

uij vu(lpu) with lpu =
j(j − 1)

2
+ i; i ≤ j

kij vk(lpk) with lpk = (j − 1)n+ i

c) do j=1,n

lpk0=(j-1)*n

lpu0=(j*(j-1))/2

do i=1,n

lpl0=(i*(i-1))/2

lpk=lpk0+i

vk(lpk)=0.

do m=1,min(i,j)

lpl=lpl0+m

lpu=lpu0+m

vk(lpk)=vk(lpk)+vl(lpl)*vu(lpu)

enddo

enddo

enddo

d) The previous algorithm needs:

1) Storage =
n(n+ 1)

2
terms for LLL

n(n+ 1)

2
terms for UUU

n2 terms for KKK

Total = 2n2 + n ⇒ A(2n2 + n) ≈ A(2n2)

2) Computing time =

2

Navarrina F., Casteleiro M., Colominas I.–”Numerical Analysis problems” Problems 3

(2(n− 1) + 1) times [1 product and 1 addition]


• • · · · • •
•
...
•
•



(2(n− 2) + 1) times [2 products and 2 additions]


∗ ∗ · · · ∗ ∗
∗ • · · · • •
...

...
∗ •
∗ •


...

...
...

(2(n− n) + 1) times [(n) products and (n) additions]


∗ ∗ · · · ∗ ∗
∗ ∗ · · · ∗ ∗
...

...
. . .

...
...

∗ ∗ · · · ∗ ∗
∗ ∗ · · · ∗ •



Total =
n∑
d=1

(2(n− d) + 1) [(d) “products” + (d) “additions”]

=
n∑
d=1

(2(n− d) + 1) (2d) FPO (Floating Point Operations)

=

(
n∑
d=1

2d(2n+ 1)−
n∑
d=1

(2d)2
)

FPO =

(
(2n+ 1)(n+ 1)n− 2

3
(2n+ 1)(n+ 1)n

)
FPO

=

(
2n3

3
+

3n2

3
+
n

3

)
FPO ⇒ T

(
2n3

3
+

3n2

3
+
n

3

)
≈ T

(
2n3

3

)
If we would have used full matrices then:

3n2 terms for LLL, UUU , KKK ⇒ A(3n2)
2n3 FPO to obtain KKK ⇒ T (2n3)

Thus, it is saved approximately

{
1/3 in memory
2/3 in computing time

2.— Repeat the previous problem when the matrices LLL and UUU have half-bandwidths l and u respec-
tively, with l << n, and u << n.

3

Navarrina F., Casteleiro M., Colominas I.–”Numerical Analysis problems” Problems 3

Sol. 2.

LLL =



l11

l21 l22

...
...

. . .

ll+1,1 ll+1,2 · · · ll+1,l+1

. . .
. . .

. . .

li,i−l li,i−l+1 li,i

. . .
. . .

. . .

ln,n−l ln,n−l+1 · · · ln,n



UUU =



u11 u12 · · · u1,u+1

u22 · · · u2,u+1
. . .

. . .
...

. . . uj−u,j

uu+1,u+1 uj−u+1,j
. . .

. . .
...

. . . un−u,n

uj,j un−u+1,n

. . .
...

un,n


a) KKK = [kij]; kij =

n∑
m=1

limumj

however

lim = 0 if m > i or m < i− l
umj = 0 if m > j or m < j − u

So that:

Kij =
∑

m = 1, n
i− l ≤ m ≤ i
j − u ≤ m ≤ j

limumj =

min{i, j}∑
m =max{i− l, j − u, 1}

limumj

Thus whenever min{i, j} < max{i− l, j − u, 1} there will be no products adding terms to kij .
Therefore, only coefficient kij such that min{i, j} ≥ max{i− l, j − u, 1} would be non-zero, a
priori, so those that i ≥ i− l, i ≥ j − u, j ≥ i− l, j ≥ j − u.

Since i ≥ i− l and j ≥ j − u are always satisfied:

4

Navarrina F., Casteleiro M., Colominas I.–”Numerical Analysis problems” Problems 3

kij might be non-zero ⇐⇒
{
i ≥ j − u ⇒ uper bandwidth (u)
j ≥ i− l ⇒ lower bandwidth (l)

Then KKK is a banded matrix with lower bandwidth that of LLL and upper bandwidth that of UUU .

KKK =

l





. . . ∗ · · · ∗

∗ . . . ∗ · · · ∗
... ∗ . . . ∗ · · · ∗
...

... ∗ . . . ∗ · · · ∗

∗
...

... ∗ . . . ∗ · · · ∗

∗
...

... ∗ . . . ∗ · · · ∗

∗
...

... ∗ . . . ∗ · · · ∗

∗
...

... ∗ . . . ∗ · · · ∗

∗
...

... ∗ . . . ∗
...

∗
...

... ∗ . . . ∗

∗ · · · · · · ∗ . . .


u

b) We store matrices LLL, UUU, KKK banded (by diagonals)

lij vl(lpl) with lpl = (j − i+ l)n+ i; i− l ≤ j ≤ i

uij vu(lpu) with lpu = (j − i)n+ i; j − u ≤ i ≤ j

kij vk(lpk) with lpk = (j − i+ l)n+ i;

{
i− l ≤ j ≤ i
j − u ≤ i ≤ j

c) do j=1,n

do i=max(1,j-u), min(n,j+l)

lpk=(j-i+l)*n+i

vk(lpk)=0.d+00

do k=max(i-l,j-u,1), min(i,j)

lpl=(k-i+l)*n+i

lpu=(j-k)*n+k

vk(lpk)=vk(lpk)+vl(lpl)*vu(lpu)

enddo

enddo

enddo

d) The algorithm requires:

1) Storage = n(l + 1) elements for LLL

n(u+ 1) elements for UUU

n(l + 1 + u) elements for KKK

Total = 2n(l + 1 + u) + n ⇒ A(2n(l + 1 + u) + n) = A(2n(l + u+ 1,5))

5

Navarrina F., Casteleiro M., Colominas I.–”Numerical Analysis problems” Problems 3

2) Computing time

The exact computation is difficult to obtain, however we know that l << n and u << n

If we assume that, what happens on the central rows and columns is of application for the rest
(which is reasonable since the only irregular ones would be the (1 + l) first rows and the (1 + u)
last columns) then we can proceed as follows.

To obtain the (l + 1 + u) elements of row i we need:

(1) product + (1) addition
(2) products + (2) additions

...
(mı́n(l, u)+1) products + (mı́n(l, u)+1) additions

...
(mı́n(l, u)+1) products + (mı́n(l, u)+1) additions

...
(2) products + (2) additions
(1) product + (1) addition

Therefore the number of operations per row is:

(l + 1 + u−min(l, u)) 2(min(l, u) + 1) OCF

2(max(l, u) + 1) (min(l, u) + 1) OCF

2(l + 1)(u+ 1) OCF

So the total computing complexity will be approximately T (2n(l + 1)(u+ 1))

Remember that if full matrices were considered then:

{
3n2 elements for LLL, UUU, KKK =⇒ A(3n2)

2n3 OCF to obtain KKK =⇒ T (2n3)

Thus, when l << n and u << n the reduction in storage and computing time is very significant
(specially in time).

3.— Of the matrix LLL it is known that it is lower triangular and that all its elements are null except
for those located on the main diagonal (which are always nonzero) and those in the row α (which
in general will be nonzero, but not necessarily), this is:

6

Navarrina F., Casteleiro M., Colominas I.–”Numerical Analysis problems” Problems 3

LLL =



l11
l22

. . .

lα1 lα2 . . . lαα
. . .

lββ
. . .

lnn


.

In order to obtain the matrix product AAA = LLLLLLT .

a) Is AAA going to be symmetric? And positive definite? Why?

b) What is the general shape of matrix AAA?

c) Develop the storage schemes that are considered the most suitable for the two matrices. As
matrix AAA is being computed, is it possible to store its coefficients in the place occupied by
the corresponding coefficients of the matrix LLL matrix to save memory space? Why?

d) Develop an algorithm suited to perform the matrix product with the storage schemes des-
cribed in the previous section.

e) How does the computational time necessary to obtain AAA grow as the size of the matrix
increases?

Sol. 3.

a) AAA = LLLLLLT with det(LLL) =
n∏
i=1

lii 6= 0 is

1) Symmetric, because AAAT = (LLLLLLT)T = (LLLT)T LLLT = LLLLLLT = AAA

2) positive semidefinite, because vvvTAAAvvv = vvvT (LLLLLLT)vvv =

(vvvTLLL)(LLLTvvv) = (LLLTvvv)T︸ ︷︷ ︸
wwwT

(LLLTvvv)︸ ︷︷ ︸
www

= wwwTwww ≥ 0

3) positive definite, because vvvTAAAvvv = 0⇐⇒ www = LLLTvvv = 000
det(LLL)6=0

=⇒ vvv = 000

b)

LLL =



l11
l22

. . .

lα1 lα2 · · · lαα
. . .

lnn


LLLT =



l11 lα1
l22 lα2

. . .
...
lαα

. . .

lnn


Then

7

Navarrina F., Casteleiro M., Colominas I.–”Numerical Analysis problems” Problems 3

AAA = LLLLLLT =



l211 l11lα1
l222 l22lα2

. . .
...

l2α−1,α−1 lα−1,α−1lα,α−1

α∑
i=1

l2αi

SYM. l2α+1,α+1

. . .

l2nn


Thus, every element of AAA is zero except for those at the main diagonal , at row α (lower part)
and at column α (upper part)

c) Since AAA is symmetric it is enough to store the lower part. In order to store LLL and the lower part
of AAA we only need two arrays of n+ (α− 1) elements:

vlvlvl ≡ (l11, l22, · · · , lα−1,α−1, lα1, lα2, · · · lαα, lα+1,α+1, · · · , lnn)

vavava ≡ (a11, a22, · · · , aα−1,α−1, aα1, aα2, · · · aαα, aα+1,α+1, · · · , ann)

Yes it is possible to store AAA over LLL, although the elements of LLL (until the lαα) are necessary to
obtain some elements of AAA (for example, l11 is used to obtain a11 and aα1) therefore the order of
operations is important. We have to follow a specific order so the elements we need for further
calculations are not overwritten before.

d)

do i = 1, α− 1 do i=1,ia-1

aii = l2ii va(i) = vl(i) * vl(i)

aαi = lii lαi va(ia-1+i) = vl(i) * vl(ia-1+i)

enddo enddo

va(2*ia-1) = 0.d+00

do k=1,ia

aαα =
∑α

k=1 l2αk va(2*ia-1) = va(2*ia-1) + vl(ia-1+k) * vl(ia-1+k)

enddo

do i = α+ 1, n do i=ia+1,n

aii = l2ii va(ia-1+i) = vl(ia-1+i) * vl(ia-1+i)

enddo enddo

e) The number of floating point operations to obtain AAA is:

(n− 1) products
(α− 1) products
(α) products + (α) additions

Total = (n+ 2α− 2) products + (α) additions
= (n+ 3α− 2) FPO =⇒ T(n+ (3α− 2))

Therefore, the time complexity grows linearly with the size of the matrix

8

Navarrina F., Casteleiro M., Colominas I.–”Numerical Analysis problems” Problems 3

4.— Of the matrices LLL and UUU it is known that they are lower and upper triangular respectively, and
that all their elements are null except for those located on the main diagonal, in the row α of LLL
and in the β column of UUU . This is:

LLL =



l11
l22

. . .

lα1 lα2 . . . lαα
. . .

lββ
. . .

lnn


, UUU =



u11 u1β
u22 u2β

. . . .
uαα .

. . . .
uββ

. . .

unn


a) what is the general shape of the product matrix AAA = LLLUUU?

b) Design storage schemes suited for the three matrices

c) Write a specific algorithm including the storage schemes described for the matrix product.

Sol. 4.

a) It is a special case of product of two skyline matrices.

We know that AAA = LLLUUU shares the same row profile as LLL and the same column profile as UUU , so
the only non-zero elements of AAA will be:

aii; i = 1, . . . , n
aαj ; j = 1, . . . , α− 1
aiβ; i = 1, . . . , β − 1

The the resulting matrix of the product will have the following shape:

Case α < β AAA =


. . .

...

· · · . . .
...

. . .
. . .



Case α = β AAA =


. . .

...
. . .

...

· · · · · · . . .
. . .



Case α > β AAA =


. . .

...
. . .

· · · · · · . . .
. . .


9

Navarrina F., Casteleiro M., Colominas I.–”Numerical Analysis problems” Problems 3

b) In order to store matrices LLL and UUU we need to arrays of (n+ (α− 1)) and (n+ (β− 1)) elements
respectively:

vlvlvl = (l11, l22, . . . , lα−1,α−1, lα1, lα2, . . . , lα,α, lα+1,α+1, . . . , lnn)
vuvuvu = (u11, u22, . . . , uβ−1,β−1, u1β, u2β, . . . , uββ , uβ+1,β+1, . . . , unn)

To store matrix AAA we need a vector of (n+ (α− 1) + (β − 1)) elements.

We may, for example, arrange the data as:

vavava = (a11, a22, . . . , ann, aα1, . . . , aα,α−1, a1β, . . . , aβ−1,β)

c) This problem can be solve similarly to the previous one.

We need to multiply LLLUUU and identify the values of the elements of AAA.

Considering the three possible cases (α < β, α = β, α > β).

Finally, the elements lik, ukj y aij are substituted by their indexes according to the storage
scheme of the previous problem.

10

