
Navarrina F., Casteleiro M., Colominas I.–”Numerical Analysis Problems” Problems 2

NUMERICAL METHODS AND PROGRAMMING 2024/2025

Error Analysis (PROBLEMS 2)

1.— We want to evaluate with an absolute error of less than 1, cm2 the area of a square enclosure.
To do this, one side of the enclosure is measured and the area is calculated by squaring it. It
is known “a priori” that the enclosure is approximately 1m2. How accurate should the ruler
used in the measurement be? Would it be possible to perform this calculation correctly on a
computer using single precision?

Sol. 1. Given the side of the region x, the area can be obtained as A = x x. Only one operation is
needed, thus the relative error will be:

rA = 1 rx + 1 rx + rAA

We know that the relative error in x can be decomposed as the inherent plus the storing error
as rx = rIx + rAx

Therefore:

rA = 2(rIx + rAx) + rAA = 2rIx + (2rAx + rAA)

In order to bound the relative error we also know that the storing error is bounded by the
Machine Epsilon:

∣∣rAx ∣∣ ≤ rM ;
∣∣rAA∣∣ ≤ rM

Thus:

|rA| ≤ 2
∣∣rIx∣∣+

(
2
∣∣rAx ∣∣+

∣∣rAA∣∣) ≤ 2
∣∣rIx∣∣+ 3 rM

Since we want to evaluate the area with an absolute error smaller than 1 cm2:

|EA| ≤ 1 [cm2] ; with rA =
EA
A

⇒ |rA| ≤
1 [cm2]

1 [m2]
= 10−4

The ruler precision p determines the error of the measure of x and thus its inherent error:

∣∣rIx∣∣ ≤ p

1 [m]

If the operations are made with infinite precision we could assume rM = 0 and therefore the
source of error in the area will come only from the inherent error:

|rA| ≤
2p

1 [m]

Which we want to be smaller than 10−4, so:

1

Navarrina F., Casteleiro M., Colominas I.–”Numerical Analysis Problems” Problems 2

2p

1 [m]
≤ 10−4 ⇔ p ≤ (1/2) 10−4 [m] = 0.05 [mm]

However, if the operations are made in single precision, we have that rM = (1/2) 2−24+2 = 2−23

⇒ |rA| ≤
2p

1
+ 3 (2−23) ≤ 10−4 ⇔ p ≤ (1/2)

(
10−4 − 3 (2−23)

)
[m] = 0.0498 [mm]

Thus, for the operations using single precision in a computer, the ruler must allow measuring
lengths with a maximum error of 0.0498 mm.

2.— We want to draw on a plotter the curve y = f(x) for values of x included in the interval [a, b].
For this purpose the following subroutine is created:

SUBROUTINE CURVE(A,B,N)

IMPLICIT REAL*4 (A-H,O-Z)

IMPLICIT INTEGER*4 (I-N)

DELTA=(B-A)/FLOAT(N)

X=A

Y=F(A)

CALL MOVE(X,Y)

DO I=1,N

X=A+FLOAT(I)*DELTA

Y=F(X)

CALL DRAW(X,Y)

ENDDO

RETURN

END

where subroutine MOVE(X,Y) moves the pen without drawing to the (x, y) coordinate point,
subroutine DRAW(X,Y) moves the pen by drawing a straight line from the previous position to
the (x, y) point, and F(X) is a function of type REAL*4 FUNCTION that is written separately.
According to the FORTRAN compiler manual, for variables of type REAL*4, m = 24 bits are
allocated for storing the mantissa (sign included).

a) Explain very briefly how the subroutine works.

b) Reasonably find —in first approximation— a maximum value of N beyond which the results
are not improved, because the precision of the computer does not allow discriminating
between two consecutive values of x.

c) Reasonably find —in first approximation— a maximum value of N beyond which the results
are not improved, because the precision of the computer does not allow discriminating
between two consecutive values of f(x).

d) Considering also that the plotter interprets the (x, y) coordinates in centimeters, and that
the maximum resolution of the pen is 0.1 millimeters, what is the maximum value of N to
be used in practice?

NOTE:Simplifications deemed reasonable may be made, since we speak of “first approximation”,
as long as they are justified.

2

Navarrina F., Casteleiro M., Colominas I.–”Numerical Analysis Problems” Problems 2

Sol. 2.a)

The interval to be studied [a, b] is discretized in n+ 1 equally spaced points a distance δ =
b− a
n

and each point (xi, yi) is obtained as xi = a+ δ i, yi = f(xi); i = 0, . . . , n
The pen moves between the discrete points obtained. Graphically:

a=x0 x1 x2 xn-2 xn-1 b=xn

Figure 1: Plot by a piecewise polygonal.

The subroutine draws a piecewise polygonal (see figure 1).

Sol. 2.b)

Let δ be the space between two contiguous point

|xi+1 − xi| = |δ|

The error at point i will be Exi = xi rxi , but in first approximation we can disregard the error
propagation for the determination of xi, assuming that rxi ≈ rAxi .

We also know that: ∣∣rAxi∣∣ ≤ rM =
1

2
2−24+2 = 2−23

Then:

|Exi | = |xi rxi | ≤ |xi| rM ≤ max
i
|xi| rM

Searching the values of δ such that the computer is able to represent since it does not make any
sense that |Exi | > δ, so we try that:

max
i
|xi| rM ≤ |δ| =

|b− a|
n

thus:

n ≤ Nx =
|b− a|

max
i
|xi|

1

rM
; with rM = 2−23

3

Navarrina F., Casteleiro M., Colominas I.–”Numerical Analysis Problems” Problems 2

Sol. 2.c)

We proceed the same way for the values of the function:

|yi+1 − yi| = |µi| = |f(xi+1 − f(xi)| ≈
∣∣f ′(xi) (xi+1 − xi)

∣∣ =
∣∣f ′(xi)∣∣ |δ|

The error will be: Eyi = yi ryi = f(xi) ryi
If in first approximation we disregard the storing errors of the intermediate operations in the

determination of f(x)⇒

ryi ≈
f ′(xi)

f(xi)
xi rxi + rAyi ; rxi ≈ rAxi ;

{ ∣∣fAxi∣∣ ≤ rM∣∣fAyi ∣∣ ≤ rM

Therefore:

|Eyi | ≈
∣∣f ′(xi) xi rAxi + f(xi) r

A
yi

∣∣ ≤ ∣∣f ′(xi) xi + f(xi)
∣∣ rM ≤ max

i

∣∣f ′(xi) xi + f(xi)
∣∣ rM

If we impose that:

max
i

∣∣f ′(xi) xi + f(xi)
∣∣ rM ≤ max

i
|µi| ≈ max

i

∣∣f ′(xi)∣∣ |δ|
then:

max
i

∣∣f ′(xi) xi + f(xi)
∣∣ rM ≤ max

i

∣∣f ′(xi)∣∣ |b− a|
n

so:

n ≤ Ny =
|b− a| max

i
|f ′(xi)|

max
i
|f ′(xi) xi + f(xi)|

1

rM
, with rM = 2−23

Sol. 2.d)

|xi+1 − xi| = |δ|
|yi+1 − yi| = |µi| ≈ |f ′(xi)| |δ|

}
⇒ |∆δi| =

√
(xi+1 − xi)2 + (yi+1 − yi)2 ≈ |δ|

√
1 + (f ′(xi))2

We impose that:

0.01cm ≤ max
i

√
1 + (f ′(xi))2 |δ| = max

i

√
1 + (f ′(xi))2

|b− a|
n

so:

n ≤ N∆ =
|b− a|max

i

√
1 + (f ′(xi))2

0.01 cm

In practice:

n ≤ min{Nx, Ny, N∆}

4

Navarrina F., Casteleiro M., Colominas I.–”Numerical Analysis Problems” Problems 2

3.— Present several pathological examples of numerical operations in which it is demonstrated that
in a digital computer:

a) “Similar” numbers must not be subtracted..

b) There must be no division by “small” numbers..

c) It is preferable to add the smallest numbers first.

d) The order of the factors alters the product.

Indicate what is the theoretical justification of these assertions. Show the examples in decimal
system using a calculator.

We will use examples in decimal base using 3 significant digits. Let ẑ denote the obtained value
corresponding to the exact value z.

Sol. 3.a)

Given two numbers a and b such that:

ra = rIa + rAa y rb = rIb + rAb

The operation subtraction and its relative error will be:

z = a− b → rz =
a

a− b
ra +

−b
a− b

rb + rAz ⇒

⇒ rz =

[
a

a− b
rIa +

−b
a− b

rIb

]
+

[
a

a− b
rAa +

−b
a− b

rAb + rAz

]
When the numbers are similar (a ≈ b) the coefficients of error propagation are very high.
The subtraction of similar numbers must be avoided since it amplifies the relative error.

Example 1: y = 1− (1− x)(1 + x) |x| << 1 (3 significant digits in base 10)
for x = 0.100 10−2: 

1̂− x = 0.999 100

1̂ + x = 0.100 101

̂(1− x)(1 + x) = 0.999 100

ŷ = 0.1 10−2

But actually y = 0.1 10−5, then ry =
y − ŷ
y

= −999 ≈ −100000%

These problems can be avoided by simply operating the function:

y = 1− (1− x)(1 + x) = 1− (1− x2) = x2 ⇒ y = x2

Example 2: y = tan(x)− sin(x) |x| << 1
for x = 0.100 100: 

t̂an(x) = 0.100 100

ŝin(x) = 0.100 100

ŷ = 0.000 100

5

Navarrina F., Casteleiro M., Colominas I.–”Numerical Analysis Problems” Problems 2

But actually y = 0.000501255, then ry =
y − ŷ
y

= 1 ≈ 100%

Again, these problems can be avoided operating the expression of the function:

y = tan(x)− sin(x) = sin(x)

(
1

cos(x)
− 1

)
= sin(x)

1− cos(x)

cos(x)
=

sin(x) (1− cos2(x))

cos(x) (1 + cos(x))
=

=
sin3(x)

cos(x) (1 + cos(x))

An asymptotic equivalent expression could also be used:

sin(x) ≈ x− x3

3!
+ θ(x5)

tan(x) ≈ x+
x3

3
+ θ̂(x5)

⇒ y ≈ x3

2

Sol. 3.b)

Given a y and b such that:

ra = rIa + rAa y rb = rIb + rAb

The operation division and its corresponding relative error are:

z = a/b → rz =

(
1

1− rb

)
ra +

(
−1

1− rb

)
rb + rAz ≈ ra − rb + rAz ⇒

and the absolute error:

Ez = z rz, Ez ≈
[a
b

(rIa − rIb)
]

+
[a
b

(rAa − rAb + rAz)
]

When |b| << 1 the coefficients of the absolute error propagation increase greatly.
However, in the results of the calculations, the absolute error is generally not very important.

What is important is that the relative error is small (except in cases where the absolute errors must
necessarily be small, as in the case of the computer drawing example where the absolute error in the
coordinates of the points is what is important).

There is one case in which the absolute error is important: when the result is zero (since in this
case the relative error is meaningless). For this reason it is normal that the convergence condition of
an iterative algorithm is written in terms of relative error and maximum admissible absolute error in
the shape:

If [|xk+1 − xk| ≤ max (ε, r |xk+1|)] → STOP

It is preferable to program this condition in this way instead of

If

[∣∣∣∣xk+1 − xk
xk+1

∣∣∣∣ ≤ r

]
→ STOP

In order to avoid problems when |xk+1| → 0

6

Navarrina F., Casteleiro M., Colominas I.–”Numerical Analysis Problems” Problems 2

Sol. 3.c)

It is preferable to add the small numbers first, so that their sum acquires a significant value before
adding the large numbers..

Example: y = 0.1 101 +

1000 times︷ ︸︸ ︷
0.1 10−2 + 0.1 10−2 + ...+ 0.1 10−2

If the operations are performed in this order, ŷ = 0.1 101 is obtained, but actually y = 0.2 101.

Thus, ry =
y − ŷ
y

= 0.5 = 50%

This error can be avoided by simply changing the order of operations, operating first the sum of
the smallest terms and then adding it to the term of higher order.

y =

1000 times︷ ︸︸ ︷
0.1 10−2 + 0.1 10−2 + ...+ 0.1 10−2 +0.1 101

Sol. 3.d)

The order of the factors alters the product, since the intermediate results (and their storing errors)
are different.

Given a, b and c such that:

ra = rIa + rAa , rb = rIb + rAb , rc = rIc + rAc

⇒
{
z1 = (a b) c → rz1 ≈ (ra + rb + rAab) + rc + rAz1
z2 = a (b c) → rz2 ≈ ra + (rb + rc + rAbc) + rAz2

It can be seen that rab and rbc may be different, as well as rAz1 and rAz2 .

Example: {
z1 = (0.5 100 × 0.2 101)× 0.999 100 → ẑ1 = 0.999 100

z2 = 0.5 100 × (0.2 101 × 0.999 100) → ẑ2 = 0.100 101

4.— In a particular situation it is necessary to evaluate the following function:

f(x) = 1− (1− x)(1 + x) = x2

for values of x such that |x| << 1.

The computer used uses m bits for the storage of the mantissa (including the sign) in floating
point, and that rounds by approximation.

a) Should f(x) be calculated as 1− (1−x)(1 +x) or as x2? (In the latter case the calculation
is done by multiplying the variable x by itself).

b) Establish the relative error bounds in the two cases.

c) Which operation is best in terms of the values of x ?

d) Present an example numerical of the convenience of using one or the other method when
calculations are performed manually with the help of three significant decimal digits.

7

Navarrina F., Casteleiro M., Colominas I.–”Numerical Analysis Problems” Problems 2

Sol. 4.a)

The function should be evaluated as f(x) = x2, since the original expression f(x) = 1−(1−x)(1+x)
will amplify the relative errors when |x| << 1 because the term (1− x)(1 + x) ≈ 1 and a subtraction
of similar numbers would be performed. For small values of |x| we will get 0 as result.

Sol. 4.b)

f1(x) = 1− (1− x)(1 + x)⇒



A = 1− x → rA =
1

1− x��
r1 +

−x
1− x

rx + rAA

B = 1 + x → rB =
1

1 + x�
�r1 +

x

1 + x
rx + rAb

C = A ∗B → rC = rA + rB + rAC

F1 = 1− C → rF1 =
1

1− C��
r1 +

−C
1− C

rC + rAF1

⇒ rF1 =
−(1− x)(1 + x)

1− (1− x)(1 + x)

[
−x

1− x
rx + rAA +

x

1 + x
rx + rAB + rAC

]
+ rAF1

=
−(1− x2)

x2

[
−2x2

1− x2
rx + rAA + rAB + rAC

]
+ rAF1

= 2 rx −
(1− x2)

x2
[rAA + rAB + rAC] + rAF1

= 2 rIx +

(
2 rAx −

(1− x2)

x2
[rAA + rAB + rAC] + rAF1

)
We can bound the storing errors by the machine epsilon rM:

|rF1| ≤ 2
∣∣rIx∣∣+

(
2 +

∣∣∣∣1− x2

x2

∣∣∣∣ 3 + 1

)
rM

= 2
∣∣rIx∣∣+ 3

(
1 +

∣∣∣∣1− x2

x2

∣∣∣∣) rM

|x| << 1⇒ |rF1| ≤ 2
∣∣rIx∣∣+ 3

(
1 +

1− x2

x2

)
rM = 2

∣∣rIx∣∣+
3

x2
rM

Therefore,

|rF1| ≤ 2
∣∣rIx∣∣+

3

x2
rM for |x| << 1

f2(x) = x2 ⇒
{
F2 = x ∗ x → rF2 = rx + rx + rAF2

⇒ rF2 = 2 rx + rAF2 = 2rIx + 2rAx + rAF2

Bounding again the storing errors by the machine epsilon we can obtain a bound of the relative
error:

|rF2| ≤ 2
∣∣rIx∣∣+ 3 rM

8

Navarrina F., Casteleiro M., Colominas I.–”Numerical Analysis Problems” Problems 2

Sol. 4.c)

Analyzing the relative error bounds for both cases it can be seen that it is always better the
expression f(x) = x2 because none of the terms amplifies the error highly. In contrast, the original
expression greatly amplifies the storing errors of the intermediate results A, B and C for values
|x| << 1.

Sol. 4.d)

x = 0.100 10−2 ⇒
{
f̂2(x) = 0.100 10−5 valor calculado correcto

f̂1(x) = 0.100 10−2 valor calculado incorrecto

5.— The n first powers ϕ1, ϕ2, . . . , ϕn of the golden ratio ϕ = (−1 +
√

5)/2 can be obtained without
performing any multiplication, since the following relation is fulfilled:

ϕi = ϕi−2 − ϕi−1.

Show that this way of performing calculations is numerically unstable, while repeated multipli-
cation is numerically stable.

Sol. 5.

Unstable algorithm: ϕ = (−1 +
√

5)/2 ≈ 0.61803398875



x0 = 1 rx0 =
�
�rIx0 +

�
�rAx0 = 0

x1 = ϕ rx1 = rIx1 + rAx1

x2 = x0 − x1 rx2 =
x0

x0 − x1
rx0 +

−x1

x0 − x1
rx1 + rAx2 =

1

ϕ2
rx0 −

1

ϕ
rx1 + rAx2

x3 = x1 − x2 rx3 =
x1

x1 − x2
rx1 +

−x2

x1 − x2
rx2 + rAx3 =

1

ϕ2
rx1 −

1

ϕ
rx2 + rAx3

...
...

xk = xk−2 − xk−1 rxk =
xk−2

xk−2 − xk−1
rxk−2

+
−xk−1

xk−2 − xk−1
rxk−1

+ rAxk =
1

ϕ2
rxk−2

− 1

ϕ
rxk−1

+ rAxk

To simplify the expression we change the notation Rk = rxk and rk−1 = rAxk , so that:

⇒



R2 = ϕ−2R0 − ϕ−1R1 + r1 = −ϕ−1R1 + r1

R3 = ϕ−2R1 − ϕ−1R2 + r2 = 2ϕ−2R1 − ϕ−1r1 + r2

R4 = ϕ−2R2 − ϕ−1R3 + r3 = −3ϕ−3R1 + 2ϕ−2r1 − ϕ−1r2 + r3

R5 = ϕ−2R3 − ϕ−1R4 + r4 = 5ϕ−4R1 − 3ϕ−3r1 + 2ϕ−2r2 − ϕ−1r3 + r4
...

Rk = ϕ−2Rk−2 − ϕ−1Rk−1 + rk−1 = (−1)k−1Fk ϕ
−(k−1)R1 +

k−1∑
i=1

(−1)k−1−iFk−i ϕ
−(k−1−i)ri

9

Navarrina F., Casteleiro M., Colominas I.–”Numerical Analysis Problems” Problems 2

being Fj the j−th term of the Fibonacci’s sequence = {1, 1, 2, 3, 5, 8, ...}

So, if R1 = rIϕ + r0, then:

Rk = (−1)k−1Fk ϕ
−(k−1)rIϕ +

k−1∑
i=0

(−1)k−1−iFk−i ϕ
−(k−1−i)ri

⇒ |Rk| ≤ ϕ−(k−1)

[
Fk
∣∣rIϕ∣∣+

k−1∑
i=0

Fk−i ϕ
i |ri|

]
Considering that ri = rAxi+1

→ |ri| ≤ rM then:

|Rk| ≤
1

ϕ(k−1)

[
Fk
∣∣rIϕ∣∣+

(
k−1∑
i=0

Fk−i ϕ
i

)
rM

]

Thus:

|Rk| ≤ Ak
∣∣rIϕ∣∣+Bk rM


Ak =

Fk
ϕk−1

Bk =

(
k−1∑
i=0

Fk−i ϕ
i

ϕk−1

)
=

k−1∑
i=0

Fk−i
ϕk−i−1

=
k−1∑
i=0

Ak−i =
k∑
j=1

Aj

And it can be easily checked that the coefficients Ak and Bk grow highly when the value of k is
increased (table 1):

Table 1: Coefficients of the series.
k Ak Bk
1 1 1

5 ≈34 ≈55

10 ≈4181 ≈6765

20 ≈63 106 ≈102 106

Then, both the inherent error in the initial data and the storage errors of the intermediate opera-
tions are amplified in an uncontrolled manner. ⇒ UNSTABLE.

NOTE:

it can be proved that the k-th term of the Fibonacci’s sequence is:

Fk =
(1 + ϕ)k − (−ϕ)k

1 + 2 ϕ
, with ϕ =

−1 +
√

5

2

and that, by mathematical induction:

F1 = 1
F2 = 1
. . .
Fk = Fk−2 + Fk−1 ∀k ≥ 3

Then,

10

Navarrina F., Casteleiro M., Colominas I.–”Numerical Analysis Problems” Problems 2

Ak =
1

1 + 2ϕ

[
(1 + ϕ)k

ϕk−1
− (−ϕ)k

ϕk−1

]
=

ϕ

1 + 2ϕ

[(
1 + ϕ

ϕ

)k
− (−1)k

]
=

ϕ

1 + 2ϕ

[(
1 +

1

ϕ︸ ︷︷ ︸
≈2.618

)k
− (−1)k

]

So the term grows exponentially.

Bk =
k∑
j=1

Aj =
ϕ

1 + 2ϕ

k∑
j=1

[(
1 +

1

ϕ

)j
− (−a)j

]

=
ϕ

1 + 2ϕ


(

1 +
1

ϕ

)
−
(

1 +
1

ϕ

)k+1

1−
(

1 +
1

ϕ

) − (−1)− (−1)k+1

1− (−1)


=

ϕ

1 + 2ϕ

[
ϕ

(
1 +

1

ϕ

)((
1 +

1

ϕ

)k
− 1

)
+

1− (−1)k

2

]

=
ϕ

1 + 2ϕ

[
(1 + ϕ)

((
1 +

1

ϕ︸ ︷︷ ︸
≈2.618

)k
− 1

)
+

1− (−1)k

2

]

Therefore the term also grows exponentially.

Stable Algorithm: ϕ = (−1 +
√

5)/2 ≈ 0.61803398875

x0 = 1 rx0 =
�
�rIx0 +

�
�rAx0 = 0

x1 = ϕ rx1 = rIx1 + rAx1
x2 = x1 x1 rx2 = rx1 + rx1 + rAx2 = 2 rx1 + rAx2
x3 = x2 x1 rx3 = rx2 + rx1 + rAx3 = 3 rx1 + rAx2 + rAx3
...

...

xk = xk−1 x1 rxk = rxk−1
+ rx1 + rAxk = k rx1 +

k∑
i=2

rAxi

Then:

rxk = k rIx1 +

(
k rAx1 +

k∑
i=2

rAxi

)

⇒ |rxk | ≤ k
∣∣rIx1∣∣+ k

∣∣rAx1∣∣+
k∑
i=2

∣∣rAxi∣∣
⇒ |rkk | ≤ k

∣∣rIx1∣∣+ k rM + (k − 1) rM

⇒ |rxk | ≤ k
∣∣rIx1∣∣+ (2k − 1) rM

In the worst case, the inherent error and the storage errors of intermediate operations grow linearly
⇒ STABLE.

In addition, the upper bound will be very conservative, so that the relative error will be small in
general, even after a large number of iterations.

11

Navarrina F., Casteleiro M., Colominas I.–”Numerical Analysis Problems” Problems 2

6.— We want to approximate ex for various values of x in the interval [0, 10] by summing the first
n terms of the Taylor series. The calculation will be performed on a computer using 24 bits
for the floating-point mantissa (including the sign). Carry out a simple study (without taking
into account the effect of the propagation of the rounding error) that establishes a maximum
value of the number of terms to be considered, above which no appreciable improvement in the
approximation can be seen.

Sol. 6.

The Taylor’s expansion of ex is:

ex ≈ 1 +
x

1!
+
x2

2!
+ ...+

xn

n!
+Rn(x) ; Rn(x) =

eξ

(n+ 1)!
xn+1 ξ ∈ [0, x]

If we assume that we will not take into account the propagation of the error in the operations, we
can approach the resolution of the problem by means of two criteria:

1) It does not make sense to keep adding terms when the new term is of the order of the Machine
epsilon or even smaller: ∣∣∣∣ xn+1

(n+ 1)!

∣∣∣∣ ≤ |ex| rM
x > 0 ⇒ e−x xn+1

(n+ 1)!
≤ rM

max
x∈[0,10]

e−x xn+1

(n+ 1)!
=


e−(n+1) (n+ 1)n+1

(n+ 1)!
for x = n+ 1 ≤ 10

e−10 10n+1

(n+ 1)!
for x = 10 ≤ n+ 1

Then, there is no point in continuing when:

e−ZnZn+1
n

(n+ 1)!
≤ 1

2
2−m+2 with

{
Zn = n+ 1 if n ≤ 9
Zn = 10 if n ≥ 9

2) It does not make sense to keep adding terms when the truncation error is of the order of the
Machine epsilon or even smaller: ∣∣∣∣ eξ xn+1

(n+ 1)!

∣∣∣∣ ≤ |ex| rM
x > 0 ⇒ eξ−x xn+1

(n+ 1)!
≤ rM

max
x∈[0,10], ξ∈[0,x]

eξ−x xn+1

(n+ 1)!
=

10n+1

(n+ 1)!

Then, there is no point in continuing when:

12

Navarrina F., Casteleiro M., Colominas I.–”Numerical Analysis Problems” Problems 2

10n+1

(n+ 1)!
≤ 1

2
2−m+2

7.— In a calculus process it is required to repeatedly evaluate the function f(x) =
√

1 + x − 1. It
is known that for small values of x , there exists, among others, the asymptotic approximation
to the above function f(x) ≈ f0(x) = x/2. The calculations will be performed on a digital
computer. Could the results obtained using the asymptotic approximation f0 be better than
the results of the calculations obtained using the function f(x) itself? If yes: For what range
of values of x?; what would this range be if single precision (24 bits for the mantissa, including
the sign) is used? In the affirmative or negative case, present several numerical examples that
corroborate the result, using the decimal base and performing floating point operations with
three digits.

Sol. 7.

It is possible that formula f0(x) gives more accurate results than the original expression for very
small values of |x|, because the truncation error of f0(x) is smaller as |x| → 0, while the rounding
error when operating f(x) can be very large when |x| → 0, since 1 + x ≈ 1. In fact for sufficiently
small values of |x| this expression will result in zero, which means 100% of relative error.

Analyzing the error propagation and the truncation errors:

1) f1(x) =
√

1 + x− 1
Y = 1 + x → rY =

1

1 + x�
�r1 +

x

1 + x
rx + rAY

Z =
√
Y → rZ =

1

2
rY + rAZ

F1 = Z − 1 → rF1 =
Z

Z − 1
rZ +

−1

Z − 1�
�r1 + rAF1

⇒ rF1 =

√
1 + x√

1 + x− 1

(
1

2

(
x

1 + x
rx + rAY

)
+ rAZ

)
+ rAF1

=

(√
1 + x√

1 + x− 1

1

2

x

1 + x
rIx

)
+

[√
1 + x√

1 + x− 1

(
1

2

(
x

1 + x
rAx + rAY

)
+ rAZ

)
+ rAF1

]

|rF1| ≤
∣∣∣∣ √1 + x√

1 + x− 1

1

2

x

1 + x

∣∣∣∣ ∣∣rIx∣∣+

[∣∣∣∣ √1 + x√
1 + x− 1

∣∣∣∣ (1

2

(∣∣∣∣ x

1 + x

∣∣∣∣+ 1

)
+ 1

)
+ 1

]
rM

2) f0(x) = x/2

{
F0 = x/2 → rF0 = rx +��r2 +�

��>
0

rAF0 (dividing by powers of 2 in binary
modifies only the exponent and therfore does not add
a new storing error term)

13

Navarrina F., Casteleiro M., Colominas I.–”Numerical Analysis Problems” Problems 2

So that:

rF0 = rx = rIx + rAx

But what we seek is not rF0 =
f0(x)− f̂0(x)

f0(x)
.

We have to take into account the truncation error since we are using an approximation to the
function we really want to evaluate. The total relative error is:

r∗F0 =
f(x)− f̂0(x)

f(x)
=
f(x)− f0(x)(1− rF0)

f(x)
=
f(x)− f0(x)

f(x)︸ ︷︷ ︸
truncation

+
f0(x)

f(x)︸ ︷︷ ︸
≈1

rF0︸︷︷︸
rounding

Thus:

r∗F0 =
(
√

1 + x− 1)− x/2
(
√

1 + x− 1)
+

x/2

(
√

1 + x− 1)
(rIx + rAx)

=
(
√

1 + x− 1)− x/2
(
√

1 + x− 1)
+

x/2

(
√

1 + x− 1)
rIx +

x/2

(
√

1 + x− 1)
rAx

|r∗F0| ≤
∣∣∣∣(√1 + x− 1)− x/2

(
√

1 + x− 1)

∣∣∣∣+

∣∣∣∣ x/2

(
√

1 + x− 1)

∣∣∣∣ ∣∣rIx∣∣+

∣∣∣∣ x/2

(
√

1 + x− 1)

∣∣∣∣ rM

In both cases when |x| << 1⇒


(1 + x)→ 1
(
√

1 + x)→ 1
(
√

1 + x− 1)→ x/2
((
√

1 + x− 1)− x/2)→ −x2/8

.

Then:


|rF1| ≤ R1 ≈

∣∣∣∣ 1

x/2

1

2
x

∣∣∣∣ ∣∣rIx∣∣+

[∣∣∣∣ 1

x/2

∣∣∣∣ (1

2
(|x|+ 1) + 1

)
+ 1

]
rM =

∣∣rIx∣∣+

(
2 +

3

|x|

)
rM

|r∗F0| ≤ R0 ≈
∣∣∣∣−x2/8

x/2

∣∣∣∣+

∣∣∣∣x/2x/2

∣∣∣∣ ∣∣rIx∣∣+

∣∣∣∣x/2x/2

∣∣∣∣ rM = |x/4|+
∣∣rIx∣∣+ rM

Evaluating the function as f0(x) will always be better as far as R0 ≤ R1, meaning that:∣∣∣x
4

∣∣∣+
∣∣rIx∣∣+ rM ≤

∣∣rIx∣∣+

[
2 +

3

|x|

]
rM

⇒
∣∣∣x
4

∣∣∣ ≤ [1 +
3

|x|

]
rM

Which will be satisfied when: ∣∣∣x
4

∣∣∣ ≤ 3

|x|
rM

So that:

14

Navarrina F., Casteleiro M., Colominas I.–”Numerical Analysis Problems” Problems 2

x2 ≤ 12 rM ⇔ |x| ≤ 2
√

3
√
rM

For values of |x| ≤ 2
√

3
√
rM the expression f0(x) has an error bound smaller than that of the

original expression f(x) despite the truncation error.

Single precision ⇒ m = 24 bits ⇒ rM = 2−23. Thus, expression f0(x) will be better for values
|x| ≤ 1.19604 10−3

In a calculator with 10 digits:

rM = 1/2 10−(10+1)+2 = 1/2 10−9 ⇒ |x| ≤ 7.74597 10−5

{
x = 0.0001→ f1(x) = 0.4998750 10−4, f0(x) = 0.5 10−4

x = 0.00001→ f1(x) = 0.5 10−5, f0(x) = 0.5 10−5

In a calculator with 3 digits:

rM = 1/2 10−(3+1)+2 = 1/2 10−2 ⇒ |x| ≤ 0.244949

8.— In a computational process it is necessary to evaluate the function f(x) = e−1/x for various values
of x ∈ [0.05, 0.10] with a relative error rf ≤ 10−8. If the values of x are known with relative
error rx ≤ 10−5, and assuming we can increase the computer’s accuracy as far as necessary, can
a satisfactory result be obtained? If not, with what precision would it be necessary to know the
data?

In either case, what type of precision—single or double—should be used if the calculations are
performed on a digital computer? Assume that in single and double precision 24 and 53 bits,
respectively, are used to store the mantissa (including the sign).

Sol. 8.

If we assume that the computer has infinite precision this implies that all storage errors are zero
and therefore rx = rIx.

This way, the error when evaluating f(x) = e−1/x will be:

rf =
f ′(x)

f(x)
x rx =

e−1/x(1/x2)

e−1/x
x rx =

rx
x

=
rIx
x
⇒ |rf | =

∣∣rIx∣∣
|x|

Since
∣∣rIx∣∣ ≤ 10−5 and x ∈ [0.05, 0.10], the upper bound of the error is:

|rf | ≤
10−5

0.05
= 0.2 10−3

So, we can state that |rf | ≤ 10−8

Example.

x = 0.05 → f(x) = 2.0611536 10−9

x̂ = 0.05 (1− 10−5) → f(x̂) = 2.0607414 10−9

}
⇒ f(x)− f(x̂)

f(x)
= 0.19998 10−3

15

Navarrina F., Casteleiro M., Colominas I.–”Numerical Analysis Problems” Problems 2

To achieve the desired accuracy we need the error in the initial data to be:

|rf | =
∣∣rIx∣∣
|x|
≤ 10−8 ⇒

{ ∣∣rIx∣∣ ≤ |x| 10−8

x ∈ [0.05, 0.10]

}
⇒
∣∣rIx∣∣ ≤ 0.05 10−8 = 0.5 10−9

We now analyze the accuracy that we would have to use in a digital computer to obtain the desired
accuracy:

{
Single precision → m = 24 → rM = 1/2 2−24+2 = 2−23 ≈ 0.119 10−6

Double precision → m = 53 → rM = 1/2 2−53+2 = 2−22 ≈ 0.222 10−15

}
Single precision will not be enough since we can not even store the value of x accurately since

|rx| ≤
∣∣rIx∣∣+ rM, and the machine epsilon alone is rM > 10−8.

We would need to use double precision. And we hope that double precision would be sufficient.

Complete study
rx = rIx + rAx ;

∣∣rAx ∣∣ ≤ rM
Y = −1/X ry = 1��>

0
r1 − 1 rx + rAy ;

∣∣rAy ∣∣ ≤ rM
F = EXP (Y) rf =

g′(y)

g(y)
y ry + rAf =

��ey

��ey
y ry + rAf ;

∣∣∣rAf ∣∣∣ ≤ rM
rf =

−1

x

(
−(rIx + rAx) + rAy

)
+ rAf

=
1

x
rIx +

(
1

x
rAx −

1

x
rAy + rAf

)
|rf | ≤

1

|x|
∣∣rIx∣∣+

(
1

|x|
+

1

|x|
+ 1

)
rM =

1

|x|
∣∣rIx∣∣+

(
2

|x|
+ 1

)
rM

In double precision rM = 2−52 = 0.222 10−15 and considering that x ∈ [005, 0.10] then the error
can be bounded as:

|rf | ≤
∣∣rIx∣∣
0.05

+

(
2

0.05
+ 1

)
2−52

We want to ensure that |rf | ≤ 10−8, thus:∣∣rIx∣∣ ≤ 0.499999545 10−9

Then, indeed, the calculation is possible in double precision. Note that the precision required for
the data x is somewhat higher than that obtained above without considering storage errors in the
operations.

9.— In a computational process it is necessary to evaluate several million times the function f(x) =
ln(1 + x), always for positive (x > 0) and small (x << 1) values of x. The FORTRAN compiler
function available is very accurate, but requires a relatively high computation time (on the order
of the equivalent to several tens of elementary operations).

16

Navarrina F., Casteleiro M., Colominas I.–”Numerical Analysis Problems” Problems 2

To reduce the computational time, the possibility of approximating the function using the first
two terms of its Taylor development is evaluated, this simplification being admitted when the
relative error is less (in absolute value) than one hundred times the machine storage error. The
following subroutines are prepared:

SUBROUTINE EXACT(X, Y1) SUBROUTINEAPROX(X, Y2)
REAL ∗ 4 X, Z, Y1 REAL ∗ 4 X, T, Y2
Z = 1.+ X T = 1.− X/2.
Y1 = ALOG(Z) Y2 = X ∗ T
RETURN RETURN

END END

Knowing that the computer works in floating point rounding by approximation and allocating
m = 24 bits to the mantissa (including 1 bit for the sign), and that the values of X are exact
(in the sense that their inherent error is zero, although in general they will be affected by the
corresponding storage error):

a) Analyze instruction by instruction the previous subroutines, obtaining the relative errors
of the variables at each step.

b) Obtain the relative error of the value Y1 calculated by the subroutine EXACT with respect
to the exact value of f(x). Obtain a bound of the error and explain what happens when x
tends to zero.

c) Obtain the relative error of the value Y2 calculated by the subroutine APPROX with respect
to the exact value of f(x). Obtain a bound of the error and explain what happens when x
tends to zero.

d) Discuss for which range of values of X the subroutine APPROX can be used instead of the
subroutine EXACT..

e) Is it possible that the APPROX subroutine provides more accurate results than the EXACT

subroutine? If so, for what values of X?

Note: The Taylor expansion (with the Lagrangian remainder) of the function f(x) is:

f(x) = −
n∑
i=1

(−1)i
xi

i
+Rn(x) ; Rn(x) = −1

(
−1

1 + ξ

)n+1 xn+1

n+ 1
ξ ∈ (0, x)

Sol. 9.a)

Given that the statement indicates that the inherent error in the data is null:

rIx = 0 ⇒ rx = rAx
∣∣rAx ∣∣ ≤ rM

EXACT: 
Z = 1.+X → rz =

1

1 + x�
�r1 +

x

1 + x
rx + rAz

Y 1 = ln(Z) → ry1 =
1/z

ln(z)
z rz + rAy1

17

Navarrina F., Casteleiro M., Colominas I.–”Numerical Analysis Problems” Problems 2

⇒ ry1 =
1

ln(1 + x)

[
x

1 + x
rAx + rAz

]
+ rAy1

APPROXIMATED: T = 1.−X/2 → rt =
1

1− x/2��
r1 +

−x/2
1− x/2

rx + rAt

Y 2 = X ∗ T → ry2 = rx + rt + rAy2

⇒ ry2 =

(
1− x/2

1− x/2

)
rAx + rAt + rAy2

Note that in this error expression it has been considered that multiplying by integer powers of the
numbering base (B = 2) does not introduce a new error neither in the division nor in the storage
operation.

Sol. 9.b)

Known ry1 =
y1 − ŷ1

y1
with ŷ1 the calculated value

Seek r∗y1 =
f(x)− ŷ1

f(x)
=
f(x)− y1

f(x)︸ ︷︷ ︸
truncation

+
y1

f(x)︸ ︷︷ ︸
≈1

y1 − ŷ1

y1︸ ︷︷ ︸
rounding

Since the expression is exact, f(x) = y1, thus:

r∗y1 = ry1 =
1

ln(1 + x)

[
x

1 + x
rAx + rAz

]
+ rAy1

∣∣r∗y1

∣∣ ≤ [1

|ln(1 + x)|

(∣∣∣∣ x

1 + x

∣∣∣∣+ 1

)
+ 1

]
rM ≡ R1

when

{
x→ 0
x > 0

}
⇒
{

1 + x→ 1
ln(1 + x)→ x

}
⇒ R1 ≈

(
2 +

1

|x|

)
rM ⇒ R1 →∞

In practice, when x → 0 the expression will result in zero, because x is negligible compared to 1,
so the error tends to 100% (not to ∞).

Sol. 9.c)

Known ry2 =
y2 − ŷ2

y2
with ŷ2 the calculated value

Seek r∗y2 =
f(x)− ŷ2

f(x)
=
f(x)− y2

f(x)︸ ︷︷ ︸
truncation

+
y2

f(x)︸ ︷︷ ︸
≈1

y2 − ŷ2

y2︸ ︷︷ ︸
rounding

We know that f(x) = x− x2

2︸ ︷︷ ︸
y2

+

(
1

1 + ξ

)3

x3/3︸ ︷︷ ︸
R2(x)

with ξ ∈ [0, x] (Taylor)

18

Navarrina F., Casteleiro M., Colominas I.–”Numerical Analysis Problems” Problems 2

Then the relative truncation error is
f(x)− y2

f(x)
=
R2(x)

f(x)
, thus:

r∗y2 =

1

(1 + ξ)3

x3

3

ln(1 + x)
+

(x− x2/2)

ln(1 + x)
ry2

=
1

(1 + ξ)3

x3/3

ln(1 + x)
+

(x− x2/2)

ln(1 + x)

[
1− x

1− x/2
rAx + rAt + rAy2

]

=
1

(1 + ξ)3

x3/3

ln(1 + x)
+

1

ln(1 + x)

[
x(1− x) rAx + x(1− x/2) rAt + x(1− x/2) rAy2

]
∣∣r∗y2

∣∣ ≤ ∣∣∣∣ 1

(1 + ξ)3

∣∣∣∣
∣∣x3/3

∣∣
|ln(1 + x)|

+
|x|

|ln(1 + x)|
[|1− x|+ |1− x/2|+ |1− x/2|] rM

Considering x > 0, x << 1 and ξ ∈ [0, x]:

∣∣r∗y2

∣∣ ≤ x3/3

ln(1 + x)
+
x(3− 2x)

ln(1 + x)
rM ≡ R2

when

{
x→ 0
x > 0

}
⇒ {ln(1 + x) ≈ x} ⇒ R2 ≈

x3/3

x
+
x(3− 2x)

x
rM =

x2

3
+ (3− 2x) rM

R2 → 3 rM when x→ 0

Sol. 9.d)

As indicated, the validity of the subroutine APROX will be accepted when the relative error is less
than one hundred times the machine error:

x2

3
+ (3− 2x) rM ≤ 100 rM ⇒ x2 ≤ 3(97 + 2x) rM ⇒ x ≤

√
291 2−23 ≈ 0.006

Sol. 9.e)

Subroutine APROX will perform better than EXACT when:

x2

3
+ (3− 2x) rM ≤ (2 +

1

x
) rM ⇔ x2 ≤ 3(2 +

1

x
− 3 + 2x) rM = 3(

1

x
+ 2x− 1)

We can disregard (2x− 1) in comparison with 1/x⇒

x2 ≤ 3

x
rM ⇔ x ≤ 3

√
3 2−23 ≈ 0.007

10.— A FORTRAN program includes the instruction X=n, where X is a real variable of type REAL*4

(single precision) or of type REAL*8 (double precision), and n is a positive integer constant of
type INTEGER*4.

Determine what is the value of n at which storage errors can occur in single precision and double
precision.

19

Navarrina F., Casteleiro M., Colominas I.–”Numerical Analysis Problems” Problems 2

Sol. 10.

Statement X=N might produce storing errors when:

N ≥ (10 ... 01︸ ︷︷ ︸
m bits

)2 = 2m−1 + 20 = 2m−1 + 1

where m is the number of bits that are destined to the mantissa (including the sign), because from
this value the number N can have more significant bits than those that fit in the mantissa and it will
be necessarily rounded.

If the first bit of the mantissa is not stored (which is most often the case) then one additional bit
will fit and the storage errors will then be:

N ≥ 2m + 1

Therefore: {
REAL ∗ 4 → m = 24 → N ≥ 16 777 217
REAL ∗ 8 → m = 53 → N ≥ 253 + 1

It can be observed that in double precision there will never be storage errors because the largest
integer that can be considered is N = 2e−1 − 1 with e = 32, meaning N = 231 − 1.

11. Develop a FORTRAN program that finds the solution to the above problem by numerical ex-
perimentation.

Sol. 11.

c==

c==Program IntegerStore

c==

c--

c This program finds the first integer that can not be stored exactly

c in a variable REAL*4.

c

c Note: The program must be compiled without optimization (option: -o0)

c to prevent compilator corrections.

c--

implicit integer*4 (i-n)

implicit real*4 (a-h,o-z)

logical seguir

parameter (MXINT=2*(2**30-1)+1) !we obtain (2**31-1) without overflow

i=0

seguir=.TRUE.

do while(seguir)

20

Navarrina F., Casteleiro M., Colominas I.–”Numerical Analysis Problems” Problems 2

i=i+1

x=i ! is equivalent to x=real(i)

j=x ! is equivalent to j=int(x)

seguir=(i.lt.MXINT).and.(i.eq.j)

enddo

if(i.ne.j)then

write(6,*) i,x

else

write(6,200)

endif

100 format(’ Problem in term i=’,i20,

. ’ ----> x=’,f30.9)

200 format(’ Every integer of type INTEGER*4’//

. ’ fit in a real*4’)

read(5,’()’)

end

12.— In a digital computer the following sum is obtained

Sn =

“n” times︷ ︸︸ ︷
a+ a+ . . .+ a,

where a is any number whose inherent error is rIa. The operations are performed in floating
point, allocating m bits to the mantissa (including the sign):

a) Calculate the total error of the result obtained by performing the above operation. Indicate
what part of the total error is due to the propagation of the inherent error of the data a and
what part is due to the propagation of the storage errors of the intermediate operations.

b) Analyze how the maximum error grows as the value of n increases. Discuss to what extent
this maximum value can be considered exaggerated.

c) Repeat the previous sections assuming that the calculation is performed in the form Sn =
n · a. Compare the results obtained in the two cases.

d) Relate these theoretical conclusions with the set-up of problem 8 of the previous problems
sheet and make a theoretical prediction of the PK from which the problems referred to in
that exercise can be produced. If necessary, compare the theoretical prediction with the
”experimental” results obtained by numerical simulation.

Sol. 12.a)

Analyzing the error in each operation:

21

Navarrina F., Casteleiro M., Colominas I.–”Numerical Analysis Problems” Problems 2



S1 = a → rS1 = ra

S2 = S1 + a → rS2 =
S1

S1 + a
rS1 +

a

S1 + a
ra + rAS2

S3 = S2 + a → rS3 =
S2

S2 + a
rS2 +

a

S2 + a
ra + rAS3

S4 = S3 + a → rS4 =
S3

S3 + a
rS3 +

a

S3 + a
ra + rAS4

...
...

Sn = Sn−1 + a → rSn =
Sn−1

Sn−1 + a
rSn−1 +

a

Sn−1 + a
rA + rASn

Considering Si = i · a then:

Si
Si + a

=
i

i+ 1
y

a

Si + a
=

1

i+ 1

Therefore:



rS1 = ra

rS2 = 1/2 rS1 + 1/2 ra + rAS2
= ra + rAS2

rS3 = 2/3 rS2 + 1/3 ra + rAS3
= ra + rAS3

+ 2/3 rAS2

rS4 = 3/4 rS3 + 1/4 ra + rAS4
= ra + rAS4

+ 3/4(rAS3
+ 2/3 rAS2

)
...

rSn =
n− 1

n
rSn−1 +

1

n
ra + rASn

= ra + rASn
+
n− 1

n

(
rASn−1

+ ...+
4

5

(
rAS4

+
3

4

(
rAS3

+
2

3
rAS2

))
...

)

⇒ rSn = rIa︸︷︷︸
inherent error

+ rAa + rASn
+
n− 1

n

(
rASn−1

+ ...+
4

5

(
rAS4

+
3

4

(
rAS3

+
2

3
rAS2

))
...

)
︸ ︷︷ ︸

storing errors

We see that the inherent error of the data is propagated as it is.

Sol. 12.b)

Bounding the error:

22

Navarrina F., Casteleiro M., Colominas I.–”Numerical Analysis Problems” Problems 2

|rSn | ≤ |rIa|+
[
2 +

n− 1

n

(
1 + ...+

4

5

(
1 +

3

4

(
1 +

2

3

))
...

)]
rM

= |rIa|+
[
2 +

1

n
((n− 1) + ...+ 4 + 3 + 2)

]
rM

= |rIa|+
[
2 +

1

n

2 + (n− 1)

2
(n− 2)

]
rM

= |rIa|+
[
2 +

1

2n
(n+ 1)(n− 2)

]
rM

= |rIa|+
1

2n
[4n+ (n+ 1)(n− 2)] rM

= |rIa|+
1

2n
[4n+ n2 − 2n+ n− 2] rM

= |rIa|+
1

2n
[n2 + 3n− 2] rM

= |rIa|+ [n/2 + 3/2− 1/n] rM

Then

|rSn |max ∼ |rIa|+
n

2
rM (When n is large)

The error grows linearly with n.

This maximum error is extremely unlikely, because for it to be reached, all storage errors must be
equal to their maximum (the machine error) and of the same sign. The final result will presumably be
smaller. In practice the storage errors will have varying values between (−rM) and (rM). Therefore,
to quantify this effect we could perform a statistical calculation and obtain the probable error (the
mathematical expectation of rSn).

Sol. 12.c)

If we operate as Sn = n · a then:

rSn = rn + ra + raSn

Generally, unless n is too large, rn = 0, then

rSn = rIa + rAa + rASn

As in the previous case, the error inherent in the data is propagated as is.

|rSn | ≤
∣∣rIa∣∣+ 2 rM

In the calculation by repeated additions, the error increases as more additions are made, while in
the calculation by multiplication the error remains at the same level.

Sol. 12.d)

23

Navarrina F., Casteleiro M., Colominas I.–”Numerical Analysis Problems” Problems 2

The effect of the accumulated errors will be noticed when

(n · a) |rSn | ≈
1

2
0.001, with a = 0.1

since the error could start to change the third decimal.

This effect could start when:

(n · a) |rSn |
max ≈ 1

2
0.001, with a = 0.1

being

|rSn |
max ∼

∣∣rIa∣∣+
n

2
rM

with rM =
1

2
2−m+2 and for large n,

∣∣rIa∣∣ << n

2
rM:

(n 0.1)
n

2
2−m+2 ≈ 1

2
0.001⇐⇒ n2 ≈ 10−2 2m−1 ⇔ n ≈ 10−1 2

m−1
2

This way, for variables of type:

REAL*4→ n ≈ 290

REAL*8→ n ≈ 6 710 886

The numerical examples and the proposed programs (SumaIterada R4 and SumaIterada R8) cast
the following results:

REAL ∗ 4 → n = 703 Sn = 70.299

REAL ∗ 8 → n = 17 704 899 Sn = 1 770 489.901

Then the phenomenon takes longer to appears than we had anticipated. This is because the error
bound rSn is exaggerated in relation to the error that is actually produced in practice.

13.— An engineer usually programs in FORTRAN and uses a certain digital computer. The engineer
wants to know what is the machine error rM with which the calculations are performed, both for
variables of type REAL*4 (single precision) and for variables of type REAL*8 (double precision).

The engineer does not have access to manuals or any documentation explaining how the data is
stored and how many bits are allocated to mantissa storage in each case.

a) Relate the machine error rM with the value of the Machine Epsilon ε > 0, corresponding
to the smallest positive real number such that A(1 + ε) 6= A(1), with A(x) being the stored
value corresponding to x.

b) To realize a FORTRAN program that allows to obtain experimentally the value of the
Machine Epsilon ε for the two types of precision (single and double) on the computer on
which the program is run.

24

Navarrina F., Casteleiro M., Colominas I.–”Numerical Analysis Problems” Problems 2

c) Test the program on a computer and compare the results with theoretical predictions. with
the theoretical predictions. Explain the discrepancies, if any.

Sol. 13.a)

A(1) = (0.100 . . . 000)B B1

A(1 + ε) = (0. 100 . . . 001︸ ︷︷ ︸
(m−1) digits

)B B1

Then:

ε =
1

2
(0. 000 . . . 001︸ ︷︷ ︸

(m−1) digits

)B B1

The term
1

2
appears due to approximation by rounding.

⇒ ε =
1

2
B−(m−1) B1 =

1

2
B−m+2

Therefore:

ε = rM =
1

2
B−m+2

In a digital computer B = 2⇒.

ε = rM = 2−m+1 →


REAL ∗ 4 → m = 24 ⇒ ε = 2−23

REAL ∗ 8 → m = 53 ⇒ ε = 2−52

But in practice it is normal that the first bit is not stored (since it is always 1 except for the
number 0). In this way one more bit is available for the mantissa, then:

ε = rM = 2−m →


REAL ∗ 4 → m = 24 ⇒ ε = 2−24

REAL ∗ 8 → m = 53 ⇒ ε = 2−53

25

Navarrina F., Casteleiro M., Colominas I.–”Numerical Analysis Problems” Problems 2

Sol. 13.b)

c======================================Program MachineEpsilon

c===

real*4 eps

real*8 deps

c.....Single Precision (REAL*4)

call MEps_Single(le2,eps)

write(6,100) le2,eps

100 format(’ REAL*4 -> Machine Epsilon = 2**’,i3,’ = ’,e15.6)

c.....Double Precision (REAL*8)

call MEps_Double(lde2,deps)

write(6,200) lde2,deps

200 format(’ REAL*8 -> Machine Epsilon = 2**’,i3,’ = ’,d15.6)

end

c------------------------------Subroutine MEps_Single-----

c Machine epsilon in single precision

c---

subroutine MEps_Single(le2,eps)

implicit real*4 (a-h,o-z)

uno=1.e+00

dos=2.e+00

eps=1.e+00

le2=0

q =uno+eps/dos

do while (uno.ne.q)

eps=eps/dos

le2=le2-1

q =uno+eps/dos

enddo

return

end

c-------------------------Subroutine MEps_Double----------

c Machine epsilon in double precision

c--

subroutine MEps_Double(le2,eps)

implicit real*8 (a-h,o-z)

uno=1.d+00

dos=2.d+00

eps=1.d+00

le2=0

q =uno+eps/dos

do while (uno.ne.q)

eps=eps/dos

le2=le2-1

q=uno+eps/dos

26

Navarrina F., Casteleiro M., Colominas I.–”Numerical Analysis Problems” Problems 2

enddo

return

end

27

