
Numerical Methods and programming — Theme 8 Lipschitz Conditions

Convergence conditions in an interval (Lipschitz Conditions)

1. Lipschitzian or contractive function.

A function φ(x) is contractive in a closed interval I if and only if{
∃λ ∈ [0, 1) / |φ(x)− φ(ξ)| ≤ λ|x− ξ| ∀x, ξ ∈ I

}
being λ the Lipschitz constant.

2. Convergence in an interval.

Given φ, Lipschitzian in I = [x0− ρ, x0 + ρ], with Lipschitz constant λ and given inicial approx-
imation x0 such that |x0 − φ(x0)| ≤ (1− λ)ρ:


φ / |φ(x)− φ(ξ)| ≤ λ|x− ξ| ∀x, ξ ∈ I ≡ [x0 − ρ, x0 + ρ]

with ρ > 0; λ ∈ [0, 1) and

x0 / |x0 − φ(x0)| ≤ (1− λ)ρ


Then,

(a) xk+1 = φ(xk) ∈ I =⇒ |xk+1 − x0| ≤ ρ

Demostration by induction.

First it is demonstrated that x1 ∈ I

x1 = φ(x0)  |x0 − φ(x0)| ≤ (1− λ)ρ ⇔
|x1 − x0| ≤ (1− λ)ρ ≤ ρ ⇔ x1 ∈ I

Then it is assumed as satisfied for xk and imposed for xk+1 as:

|xk+1 − xk| = |φ(xk)− φ(xk−1)| ≤ λ |xk − xk−1|
|xk − xk−1| = |φ(xk−1)− φ(xk−2)| ≤ λ |xk−1 − xk−2|

...
|x2 − x1| = |φ(x1)− φ(x0)| ≤ λ |x1 − x0|

Thus,

|xk+1 − xk| ≤ λk |x1 − x0| ≤ λk (1− λ)ρ ≤ ρ

|xk+1 − x0| bounds need to be obtained. So:



|xk+1 − x0| = |(xk+1 − xk) + (xk − xk−1) + . . . + (x1 − x0)|
≤ |xk+1 − xk|︸ ︷︷ ︸ + |xk − xk−1|︸ ︷︷ ︸ + . . . + |x1 − x0|︸ ︷︷ ︸

≤ λk(1 − λ)ρ ≤ λk−1(1 − λ)ρ ≤ λ (1 − λ)ρ

≤ (λk + λk−1 + . . .+ λ0)︸ ︷︷ ︸(1− λ)ρ(
1−λk+1

1−λ

)

This leads to:

|xk+1 − x0| ≤
(

1− λk+1
)
ρ ≤ ρ

(b) lim
k→∞

xk = α (Demonstration that it is a Cauchy sequence)

|xm − xm+p| = |(xm − xm+1) + (xm+1 − xm+2) + . . . + (xm+p−1 − xm+p)|
≤ |xm − xm+1|︸ ︷︷ ︸ + |xm+1 − xm+2|︸ ︷︷ ︸ + . . . + |xm+p−1 − xm+p|︸ ︷︷ ︸

≤ λm(1 − λ)ρ ≤ λm+1(1 − λ)ρ ≤ λm+p−1 (1 − λ)ρ

≤ (1− λ) ρ λm(1 + λ+ . . .+ λp−1︸ ︷︷ ︸) = (1− λp) ρ λm

1−λp
1−λ

This implies that:

∀ ε > 0, ∃ N(ε) / |xm − xm+p| < ε, ∀m > N(ε)

If N / λN < ε/ρ is stated then:

|xm − xm+p| ≤ (1− λp) ρ ε

ρ
≤ ε

And consequently it is a convergent Cauchy sequence.

(c) α is the unique root of f in I

By reductio ad absurdum it is assumed that there is another root β. Then,

β ∈ I ≡ [x0 − ρ, x0 + ρ]; β = φ(β)

And,

|α− β| = |φ(α)− φ(β)| ≤ λ|α− β|.

Consequently,

|α− β| ≤ λ|α− β| with λ ∈ [0, 1)

Which is only possible if α = β and then the root would be unique.

(d) Convergence is, at least, linear

|xk+1 − α| = |φ(xk)− φ(α)| ≤ λ |xk − α|



And,

|xk+1 − α| ≤ λ |xk − α| with λ ∈ [0, 1)

So it is proved that the convergence is linear.

3. Convergence in an interval considering rounding errors propagation

Given the functional iteration algorithm:

xk+1 = φ(xk)

It can be computed in practice:

x̂k+1 = φ(x̂k) + εk

Let be ε such that máx|εk| ≤ ε

For the algorithm to converge,

lim
k→∞

x̂k = α.

Given α such that α = φ(α), with ρ > 0 in an interval I = [α− ρ, α+ ρ]. If φ(x) is Lipschitzian
in I with constant λ ∈ [0, 1) and even more x̂0 ∈ [α − ρ0, α + ρ0] with ρ0 ∈ (0, ρ − ε

1−λ) this
validity range of ρ0 is accepted so that x̂1 ∈ I. Thus,

|α− x̂1| = |α− (φ(x0) + ε0)| ≤ |α− φ(x0)|+ |ε0| ≤ (1− λ)ρ0 + |ε0| ≤ (1− λ)ρ0 + ε

|α− x̂1| ≤ (1− λ)ρ0 + ε < (1− λ)ρ

Then,

ρ0 < ρ− ε

1− λ

And it can be demonstrated that:

1. x̂k ∈ I ∀k

2. |x̂k − α| ≤
ε

1− λ
+ λk

(
ρ0 −

ε

1− λ

)
And in the limit:

k →∞ =⇒ x̂k ∈
[
α− ε

1− λ
, α+

ε

1− λ

]
It is therefore possible to converge to the solution but within the limits of machine accuracy.

Moreover, the slower an algorithm is (λ→ 1), the higher this error rate will be. Slower algorithms
are also more inaccurate.

Demostration:

Let’s assume that x̂0 ∈ [α− ρ0, α+ ρ0]



|x̂k − α| = |φ(x̂k−1) + εk−1 − φ(α)| ≤ |φ(x̂k−1)− φ(α)|+ |εk−1| ≤ λ|x̂k−1 − α|+ ε

|x̂1 − α| ≤ λ|x̂0 − α|+ ε

|x̂2 − α| ≤ λ2|x̂0 − α|+ λε+ ε

...

|x̂k − α| ≤ λk|x̂0 − α|+ λk−1ε+ . . .+ λε+ ε

|x̂k − α| ≤ λk|x̂0 − α|+ ε(λk−1 + . . .+ λ+ 1)

|x̂k − α| ≤ λk|x̂0 − α|+ ε
1− λk

1− λ

|x̂k − α| ≤ λkρ0 + ε
1− λk

1− λ

|x̂k − α| ≤ λk
(
ρ0 −

ε

1− λ

)
+

ε

1− λ
≤ ρ0 +

ε

1− λ
= ρ ∀k

Thus, |x̂k − α| ≤ ρ and x̂k ∈ I ∀k
In the limit:

lim
k→∞

|x̂k − α| ≤
ε

1− λ
=⇒ α− ε

1− λ
≤ lim

k→∞
x̂k ≤ α+

ε

1− λ
Then the iterative algorithm converges to the solution α but with a non-zero upper bound on
the error.


