
– Typeset by GMNI & FoilTEX –

PROGRAMMING IN

FORTRAN LANGUAGE

GMNI — GRUPO DE MÉTODOS NUMÉRICOS EN INGENIERÍA

Departamento de Métodos Matemáticos y de Representación
Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos

Universidade da Coruña

GMNI - Grupo de Métodos Numéricos en Ingenieŕıa

http://caminos.udc.es/gmni

E.T.S.I. Caminos, Canales y Puertos—Universidade da Coruña

Content

I Standard computer structure

I Algorithms, computer programs and programming languages

I Fortran language

E.T.S.I. Caminos, Canales y Puertos—Universidade da Coruña

Standard computer structure (I)

I A computer is a machine capable of storing data an processing them given a
sequence of established instructions fed with the objective of acquiring some
information.

I The sequence of instructions (statements) is known as “program”.

I Even though there are predecessor to computers, the actual computers
emerged in the 1940s

I A computers is mainly composed of:

• “Hardware”: physical operating components (memory slots, motherboard, processor,...)

• “Software”: applications implemented on the “hardware” developed to perform a
particular sequence of statements.

E.T.S.I. Caminos, Canales y Puertos—Universidade da Coruña

Standard computer structure (II)

I Hardware:

- - : HARD DISKS, TAPE DRIVE, ... 1

CPU
INTERFACE - - : USER TERMINALS (screen, keyboard, mouse, ...) 1

- -

(processor)
MOTHERBOARD

1

1
1

MEMORY
RAM

- : PRINTER, PLOTTER, SCANNER ..

- : OTHER PERIPHERAL

-Modem, graphic card
-Optical drives (CD, DVD, Blu-ray Disc, HD DVD ...)
-Sound devices (microphone, speakers ...)
-Connection Ports (USB, firewire, SD, XD)

• CPU (Central Processing Unit): It is a computer part that executes the instructions of
the software.
B Logic unit that executes the operations with the data.

B Control unit that interprets the sequence of commands and manages the associated devices.

• Main memory (RAM-“Random Access Memory”): manages the data and instructions
being used by the processor at any given time.
B It is a volatile memory.

B Its access is faster than that of the secondary memory.

E.T.S.I. Caminos, Canales y Puertos—Universidade da Coruña

Standard computer structure (III)

• Secondary memory (Hard disk, ...): It is a non-volatile memory to storage data,
software, ... Thus, its access is slower.

• Motherboard: It is the interface hat provides physical connection between all the
hardware elements and the processor (CPU)

• Peripheral: external devices connected to the computer through the motherboard

-Keyboard, mouse, monitor,...
-Optical disc drive
-Audio devices
-...

I Software:

• Operating System (Windows, Linux, Unix, MAC OS, MS-DOS, VMS,...)

• Text Editors (Word, OpenOffice, Wordpad, Scite, vi, emacs,...)

• Spreadsheet managers (Excel, OpenOffice,...)

• ...

E.T.S.I. Caminos, Canales y Puertos—Universidade da Coruña

Standard computer structure (IV)

I Computing performance:
• Clock rate of the CPU (GHz, MHz,...) usually measured in Gigaflops (Operations in

Floating Point per Second)

• Bus speed connection between the processor and the RAM memory (FSB-Front Side
Bus) usually measured in MHz.

• RAM memory: Measured in size (Mb, Gb,...) as well as in speed of access (MHz)

I Information management:

• bit (BInary digiT): Number base 2→ �
{

0
1 . It is the smallest memory unit

• CPU: 8, 16, 32, 64, 128 bits processors

• Measuring units:

B 1 byte=8 bits=1 octet

B 1 koctet=103 octets, 1 Moctet=106 octets, 1 Goctet=109 octets

B 1 kbyte=210 bytes = 1024 bytes, 1 Mb=220 bytes = (1024)2 bytes, 1 Gb=230 bytes = (1024)3

bytes

• Binary base importance:

B Computer structure

B data storage: e.g. 23 in decimal base =

{
11111111111111 00000000000000 11111111111111 11111111111111 11111111111111
11111111111111 · 24 + 00000000000000 · 23 + 11111111111111 · 22 + 11111111111111 · 21 + 11111111111111 · 20 in base 2

E.T.S.I. Caminos, Canales y Puertos—Universidade da Coruña

Algorithms, programs and programming languages (I)

I Algorithm:

• A set of rules or instructions that precisely defines a sequence of operations for
determining an output. They are much older than the existence of computers.
(Mohammed Ibn Musa abu Djafar Al-Khwarizmi, mathematician of the VIII-IX
century).

• If the algorithms involves a computer language, then that set of instructions is called
“computer program”

I Programming languages classification:

• Machine language: Combination of 0 and 1 values that the computers is able to
understand and interpret directly

• Assembler language: replaces the machine language with mnemonic codes and symbolic
names. The application that translates these codes into machine language is the
“assembler”.

• High-level language: presents a simpler syntax for the user. Sometimes, there is an
intermediate support language to make the transition. Some of these high-level
languages are: Fortran, C, C++, Python, Java, Cobol, Lisp, Basic, Pascal...

♥ Each programming language is classified in terms of its level of abstraction Each
programming language level is supported by programs developed at one of the lower
levels.

E.T.S.I. Caminos, Canales y Puertos—Universidade da Coruña

Algorithms, programs and programming languages (II)

I Source code translation:

• Interpreters: they translate instruction by instruction the sequences of operations during
execution. They are interactive and modifiable but are slow in execution. (Ej. Basic,
Python)

• Compilators: translate the program (source code) in bulk before the execution of
operations. They are not modifiable interactively but are very fast in the execution of
operations.. (e.g. Fortran)

The stages of a Fortran program development are:

FORTRAN SOURCE CODE (*.for,*.f)

⇓ Compilation

OBJECT PROGRAM (*.obj)

⇓ Linking

EXECUTABLE PROGRAM (*.exe)

⇓ Execution

RESULTS

E.T.S.I. Caminos, Canales y Puertos—Universidade da Coruña

Fortran Language (I)

I Introduction:

• Fortran is the acronym for FORmula TRANslator and was created in 1954 by the IBM
company as opposed to other languages very close to the machine language at the time.

• It is a standard language, easy to use, very widespread, very well adapted to engineering
problems and very refined throughout its different versions: I, II, III, IV, 66, 77, 90, 95,
HPF (High Performance Fortran), 2000.

• It is a sequential programming language whose sentences are incorporated into a plain
text file with particular extension (*.f, *.for).

• The use of upper and lower case letters in the text file is irrelevant.

• The writing format of each line of source code is:

LABEL ----3a+E:--- STATEMENTS
--�==----

CHARACTERS IGNORED

BY THE COMPILER

1 2 3 4 5 7 8 · · · · · · · · · 70 71 72 73 · · · · 80

-------------­

LINE
LABEL

COMMENTS LINE
(e, !) CONTINUATION(&, e,.)

E.T.S.I. Caminos, Canales y Puertos—Universidade da Coruña

Fortran Language (II)

I Elements of a Fortran program

• Statements:

{
Non-executable describe

{ -type
-characteristics
-values

}
of data

Executable describe the instructions to perform

• Comments: They do not affect the processing of the program (source code), but help
the programmer to understand it.

I Structure of a Fortran Program

-Declaration of variables

{Common
Dimension, implicit
Data, parameter.

.

.
-Executable statements

.

.

.
-END

MAIN PROGRAM

INPUT

\

CALL SUBPROG 1 '4E'------

----+------�

STATEMENTS

C ALL SUB P R OG 2 14E::------------+----------�

STATEMENTS

CALL SUBPROG N �

-----+----------�

\

OUTPUT

SUBPROGRAMS

INPUT 1

SUBPROG 1

SUBPROG 2

SUBPROG N

\

OUTPUT 1

E.T.S.I. Caminos, Canales y Puertos—Universidade da Coruña

Fortran Language (III)

Fortran Statements

I Data:

• Constants:

B Integer: 12, -37, ...

B Real
{

fixed point: 6.5, -7.3, -0.12, 12.5 ...
floating point: 0.12E+04, 0.13E-01, ...

B Complex: (-3.7,5.4),(7E-3,5.1), ...

B Logic:
{

.TRUE.

.FALSE.

B Character: ’Diego’,’problem1’, ...

E.T.S.I. Caminos, Canales y Puertos—Universidade da Coruña

Fortran Language (IV)

• Variables: They are symbolic names that correspond to a certain memory location in
which a value is stored (numeric, logical, alphanumeric, ...). The first character defining
the name must be a letter, but the remaining characters can be other symbols. They
can be declared explicitly (one by one) or implicitly (by a general criterion applicable to
all of them).)

B Integer: they store integer numbers.

◦ By default, the first character must be I, J, K, L, M, N (I-N). But the default
configuration can be easily changed.

◦ 2 bytes of size(single precision)→ INTEGER*2
Range = (-32768, 32767)

◦ 4 bytes of size (double precision)→ INTEGER*4
Range = (-2147483648, 2147483647)

◦ Explicit declaration: integer*2 ind, num

◦ Implicit declaration: implicit integer*4(i-n)

Attention!

◦ It is recommended to leave I-N as integers and use them only as integer counters.

◦ It is not possible to operate directly with real numbers. They must first be
transformed

E.T.S.I. Caminos, Canales y Puertos—Universidade da Coruña

Fortran Language (V)

B Reals:

They are stored in floating point. By default, their name starts by (A-H,O-Z)

May be stored in 4 bytes (single precision)→ REAL*4

Range ≈(-1.7E38,-2.9E-39), (2.9E-39,1.7E38)

±0.1234567 E ± 123456︸ ︷︷ ︸ ︸ ︷︷ ︸
MANTISSA EXPONENT

(24 bits) (8 bits)

May be stored in 8 bytes (double precision)→ REAL*8

Range ≈(-1.0E+307,-1.E-309), (1.E-309,1.0E+307)

If operations are to be performed between variables of different types, it is necessary
to transform one of them so that they are of the same type.

Explicit declaration: real*8 coord, temp
Implicit declaration: implicit real*8(a-h,o-z)

B Complex:

There is no default declaration.

Explicit declaration: complex*8 a1,a2 or complex*16 a3

Implicit declaration: implicit complex*8 (h-k)

E.T.S.I. Caminos, Canales y Puertos—Universidade da Coruña

Fortran Language (VI)

B Logical:
{

.true.

.false.
There is no default declaration.

Explicit declaration: logical var1, var2

Implicit declaration: implicit logical (a-c)

Operations: .NOT., .AND., .OR.

Relational operators (they assign logic values to numerical variables)

.LT.→ < (or <)

.LE.→ ≤ (or <=)

.EQ.→ = (or ==)

.NE.→ 6= (or /=)

.GE.→ ≥ (or >=)

.GT.→ > (or>)

B Characters: Any set of characters between ’

Explicit declaration: character nombre*20, apellido*30

Implicit declaration: implicit character*20 (h-m)

Concatenation operator:

a=’PEDRO ’
b=’GONZALEZ’
c=a//b → c=’PEDRO GONZALEZ’

E.T.S.I. Caminos, Canales y Puertos—Universidade da Coruña

Fortran Language (VII)

B Matrices: Matrices are stored by columns in an array(
a11 a12 a13
a21 a22 a23
a31 a32 a33

)
⇒ (a11, a21, a31, a12, a22, a3,2, a13, a23, a33)

integer i, j, k
real a, b, c
dimension i(10),a(3,4), b(10,10,10)

B Data: Assigns initial values to variables before the program is executed.

dimension a(3)
data a /1.0, 2.0, 3.0/

B Parameter: Assigns a symbolic name to a constant.

PARAMETER (identifier1=cte1, identifier2=cte2)

parameter (PI=3.14159265, ALPHA=2.7)

E.T.S.I. Caminos, Canales y Puertos—Universidade da Coruña

Fortran Language (VIII)

I Arithmetic operations:

Arithmetic operations are interpreted from right to left. The operations
indicated in the statements on the right side of the “=” symbol are
performed and stored on the variable indicated on the left side.

factor=x*y

• Addition: x=a+b a, b and c types must coincide
• Subtraction: x=a-b a, b and c types must coincide
• Product: x=a*b a, b and c types must coincide
• Division: x=a/b a, b and c types must coincide

Caution with dividing by 0.d+00. Overflow errors might appear given outputs of type
(NaN)

• Power: x=a**b

If possible, the exponent b should be integer. The base will usually be a real variable.
Real exponent powers are slower and more imprecise.

Operations priority (lower to higher):
(

+
−
)

,
(∗

/

)
, (∗∗)

And in case of conflict from left to right.

E.T.S.I. Caminos, Canales y Puertos—Universidade da Coruña

Fortran Language (IX)

I Functions

• External: arithmetic functions included in the system libraries

sin(x) asin(x) log(x) abs(x)
cos(x) acos(x) exp(x) aint(x) ≡ E(x)

tan(x) atan(x) sqrt(x)
cosh(x)
senh(x)
tanh(x)

• Intrinsic of the compiler: conversion functions

B nint(x) (Nearest INTeger): (real*4)→ Integer by approximation

B int(x) (integer part): (real*4 ó real*8)→ Integer by truncation

B ifix(x) (integer part): (real*4)→ Integer by truncation

B float(x) (floating point): integer→ real by default, usually 4 bytes

B dfloat(x) (floating point): integer→ real in double precision

B dble(x) any variable→ real in double precision

• User-defined functions: defined by the user

E.T.S.I. Caminos, Canales y Puertos—Universidade da Coruña

Fortran Language (X)

I Flow control statements:

• GOTO

♥ GOTO UNCONDITIONAL:

GOTO ET1

Transfers the flow of the program to the line of source code with label ET1

It is recommendable that the line with lable ET1 has the statement CONTINUE
since some compilators require it

goto 47
non included statements

47 continue

E.T.S.I. Caminos, Canales y Puertos—Universidade da Coruña

Fortran Language (XI)

♥ GOTO COMPUTED:

GOTO (ET1,ET2,...,ETN), INDEX

If INDEX value is 1, 2, ..., N the program flow transfers to the lines of code with
the labeling ET1,ET2,...,ETN .

If there is no match the execution continues withe the line of codes that follows the
GOTO

goto(11,12,13), I
statements for I 6= 1, 2, 3

goto 15
11 continue

statements for I = 1
goto 15

12 continue
statements for I = 2

goto 15
13 continue

statements for I = 3
15 continue

E.T.S.I. Caminos, Canales y Puertos—Universidade da Coruña

Fortran Language (XII)

• IF

♥ IF (ARITHMETIC):

IF (INDEX)ET1,ET2,ET3

◦ If INDEX<0 the flow goes to the line with label ET1

◦ If INDEX=0 the flow goes to the line with label ET2

◦ If INDEX>0 the flow goes to the line with label ET3

♥ IF (LOGIC):

IF (ILOGIC) EXPRESSION

ILOGIC= expression or logic variable
EXPRESSION= any other statement

Examples:

if ((a.eq.b).and.(c.eq.d))e=a+c

if ((a.eq.b).and.(c.eq.d))goto 10

E.T.S.I. Caminos, Canales y Puertos—Universidade da Coruña

Fortran Language (XIII)

♥ IF (BLOCK):

[if (ilogic) then

Statements to execute if ilogic is satisfied
endif
if (ilogic) then

Statements to execute if ilogic is satisfied
else

Statements to execute if ilogic is NOT satisfied
endif

if (ilogic1) then

Statements to execute if ilogic1 is satisfied
elseif (ilogic2) then

Statements to execute if ilogic2 is satisfied and not ilogic1
else

Statements to execute if neither ilogic1 nor ilogic2 are satisfied
endif

if (model.eq.1) then

a=x*y
elseif (model.gt.0) then

a=x+y
else

a=x-y
endif

E.T.S.I. Caminos, Canales y Puertos—Universidade da Coruña

Fortran Language (XIV)

♥ IF (NESTED BLOCKS):



if (cond1) then
if (cond2) then

... statements to execute if cond1 and cond2 are satisfied

else

... statements to execute if cond1 is satisfied and cond2 is not satisfied

endif
else

if (cond3) then

... statements to execute if cond1 is not satisfied and cond3 is satisfied

else

... statements to execute if cond1 is not satisfied and cond3 is not satisfied

endif
endif

if (a.eq.1) then
if (b.eq.2) then

x=a+b
else

x=a-b
endif

else
if (b.eq.1) then

x=a*b
endif

endif

E.T.S.I. Caminos, Canales y Puertos—Universidade da Coruña

Fortran Language (XV)

Example program: Computation of the factorial of 10

program factorial
implicit integer*4(i-n)

ifact=1
i=0

10 continue

i=i+1

ifact=ifact*i

if(i.lt.10)then
goto 10

endif

end

E.T.S.I. Caminos, Canales y Puertos—Universidade da Coruña

Fortran Language (XVI)

• DO (LOOPS)

♥ Allows to repeat a sequence of operations a determined number of times:

do icount=imin,imax,is
sequence to repeat from "imin"until "imax" in increments of "is"

enddo

imin=initial value of the counter
imax=maximum value of the counter (end of the loop)
is=step between each counter value (optional, if not specified then→ is=1)

program factorial
integer*4 i,fact
fact=1[do i=1,10

fact=fact*i
enddo
end

 do i=n,1,-1[do j=1,m
Statements to repeat

enddo
enddo

• DO WHILE: Repeats the sequence while the specified condition is true

do while(logic_condition)
Statements to repeat

enddo

• CALL: diverts the execution to a subprogram (to be seen later)

• RETURN: diverts the execution from a subprogram to back to the main program

• STOP: stops the execution of the program

E.T.S.I. Caminos, Canales y Puertos—Universidade da Coruña

Fortran Language (XVII)

I INPUT AND OUTPUT STATEMENTS. FORMATS

• READ: Statement for reading data (the program reads data)

READ(NL,NF) Variables

where:
{

NL = label of the logic unit to be read from (keyboard=5)
NF = label of the line where the reading format is specified

read(5,100)a,b,c
100 format(3d15.6) → formats are explained in the next section

read(5,*)a,b,c → system’s standard format

• WRITE: Statement for writing data (the program writes data)

WRITE(NL,NF) Variables

where:
{

NL = label of the logic unit to write int (screen=6)
NF = label of the line where the writing format is specified

write(6,100)a,b,c
100 format(3d15.6) → formats are explained in the next section

write(6,*)a,b,c → system’s standard format

Formats can be written at any point in the program, but it is advisable to write them
after the READ or WRITE instruction

They should never be inserted inside control instructions (goto, if, ...) because they may
not be accessible from other points in the program.

E.T.S.I. Caminos, Canales y Puertos—Universidade da Coruña

Fortran Language (XVIII)

• FORMAT: Determines the way in which the data to be read or written is to be
processed (digits, decimals, type, ...)

♥ Specifications:
$ → To prevent the program from jumping a line at the end of the statement
/ → line break
, → specifiers separator

♥ Integers: nIm being
{

n = number of variables with that specification (optional)
m = number of digits to be used (sign included)

15i5→ 15 integer numbers with 5 digits (-210, -1234)

♥
Reals: nFm.d


n = number of real variables (optional)
m = total number of digits of the real number

(sign included, decimal point and “0.”)
d = number of decimal digits

nEm.d


n = number of reals (optional)
m = total number of digits of the real number

(sign included, decimal point and 0., of the mantissa,
E character, sign and digits of the exponent)

d = decimal digits of the mantissa

nDm.d same as the above but for real*8
17f5.1→ 17 real numbers with 5 digits and 1 decimal (12.1, -12.1)
3e12.5→ 3 real numbers with 12 characters and 5 decimal digits (0.12345E+05,
-0.12345E-05)

E.T.S.I. Caminos, Canales y Puertos—Universidade da Coruña

Fortran Language (XIX)

♥ Characters: nam
{

n = number of variables (optional)
m = number of characters of each one (optional)

15a5→ 15 variables with 5 characters (Diego, series, ...)

♥ Spaces: nx where n is the number of spaces

♣ General rules about formats:

♥ Give each variable a suitable format

♥ if the format is exhausted before the variables, it is repeated

♥ If the list of variables is exhausted before the format, the rest of specifications are neglected

♥ Careful with the format capacity (the number 1000 does not fit in a i3), the character (∗) is written

♣ Alternative definition of formats:

They can be specified directly for each READ/WRITE statement

WRITE(6,’(FORMAT)’) → write(6,’(i5,5e15.6)’)

♣ Examples

-1234.123→
{

read(5,10)a
10 format(f9.3)

write(6,11)3.1416d+00
11 format(d10.3)

}
→ 0.314E+01

Series 123→ read(5,’(a6,x,i3)’)a,i write(6,*)’ Series’→ Series

E.T.S.I. Caminos, Canales y Puertos—Universidade da Coruña

Fortran Language (XX)

• INPUT/OUTPUT DATA FILES

OPEN(UNIT=
{

no
}

,FILE=

{ ’input.txt’
’output.txt’

...

}
, STATUS=

{ ’old’
’new’
’unknown’

}
)

Usually, the number of the logic unit
{

no
}
∈ [10, 99]

When the reading or writing is done should be closed with CLOSE(
{

no
}

)

Examples:
open(unit=11,file=’datos.txt’,status=’old’)
do i=1,100
read(11,’(i5,3e15.6)’)ipoint,xpoint,ypoint,zpoint

enddo
close(11)

open(unit=12,file=’entrada.txt’,status=’unknown’)
read(12,10)i,j,x,y,z

10 format(3x,2(i5,2x),/,3(3x,f8.4))
close(12)

E.T.S.I. Caminos, Canales y Puertos—Universidade da Coruña

Fortran Language (XXI)

I ARRAYS AND MATRICES (sets of structured data

Declaration → the same as the rest of variables.
The type of information to be stored is declared.

Static declaration → DIMENSION name 1(k1,k2,...,km)

•m indicates the number of dimensions of the array or matrix
♥m = 1 indicates that the data is stores with one-dimensional array structure

♥m = 2 indicates that the data is stores with two-dimensional array structure
(matrix)

♥m > 2 indicates that the data is stores with m-dimensional array structure
(hyper-matrix)

• ki (i = 1, ...,m) is the number of components that the array has in each
dimension. The necessary memory is saved with that information.

dimension v(20),a(3,4) ! array v of 20 elements and
! matrix a with 3 rows and 4 columns

• The data is internally stored by columns:[
a11 a12
a21 a22

]
is stored as [a11, a21, a12, a22]

E.T.S.I. Caminos, Canales y Puertos—Universidade da Coruña

Fortran Language (XXII)

Arrays (n)

Reading/writing by rows Reading/writing by columns

dimension a(10) dimension a(10)
do i=1,10

read(5,*)(a(i),i=1,10) read(5,*)a(i)
enddo

Matrices (n×m)

Reading/writing in 1 row reading/writing in rows and columns

dimension b(10,20) dimension b(10,20)
do i=1,10

write(6,*)((b(i,j),j=1,20),i=1,10) write(6,*)(b(i,j),j=1,20)
enddo

Reading/writing/modification by rows Reading/writing/modification by columns

dimension b(10,20) dimension b(10,20)
do i=1,10 do j=1,20

do j=1,20 do i=1,10
read(5,*)b(i,j) write(6,*)b(i,j)

enddo enddo
enddo enddo

E.T.S.I. Caminos, Canales y Puertos—Universidade da Coruña

Fortran Language (XXIII)

Relevan issues:

♠ The storage of large arrays and matrices is very expensive because it requires a lot of
memory storage capacity.

implicit real*8(a-h,o-z)

dimension a(10000,10000)

10000×10000×8 bytes ≈ 763Mb

♠ It is necessary to be very careful with the declaration of the dimension of the matrices.:

B Over-sizing can exceed the computer’s memory limits.

B If we fall too short we can overwrite other variables
(careful! Fortran does not warn about this issue)

♦ SOLUTION: DYNAMIC MEMORY ALLOCATION.

E.T.S.I. Caminos, Canales y Puertos—Universidade da Coruña

Fortran Language (XXIV)

DYNAMIC MEMORY ALLOCATION:

I It is done in two steps:
1. In the declaration of variables it is stated that one variable will be an aray:

implicit integer*4(i-n), real*8(a-h,o-z)

allocatable name1(:,:,...), name2(:,:,...)

...

The number of dimensions of the array is indicated with the number of times that “:”
between the parenthesis.

2. Then, in the program statements, the dimension of the array will be indicatedarray:
...

allocate (name1(k1, k2, ...), name2(l1, l2, ...))
...

being k1, k2, ... and l1, l2, ... the number of elements of the arrays in each dimension

I The type of data (INTEGER, REAL, ...) contained in the array is indicated
similarly than for the rest of variables: explicitly or implicitly.

I NOTE: It is recommended to use this form of dynamic sizing only in the
main program.

E.T.S.I. Caminos, Canales y Puertos—Universidade da Coruña

Fortran Language (XXV)

I SUBPROGRAMS:

• Using subprograms allow to access to computer modules separated from the main
program, accessible at any point of it.

• Once concluded, the subprogram returns the control to the main program.

• Different modules can, at the same time, be called between them.

• They allow a modular and structured programming. It is possible that in the main
program there are only calls to the subprogram that execute the operations→ simpler
and cleaner programs

• Each module can be compiled separately (each of them is terminated by an END
statement). They are connected to the main program in the linking phase.

• The exchange of information between the main program and the subprograms is key.
(CAREFUL: variables in fortran indicate the position in memory where they are stored)

E.T.S.I. Caminos, Canales y Puertos—Universidade da Coruña

Fortran Language (XXVI)

I Usual flowchart of a program.

DATA INPUT

DATA PROCESSING

MAIN PROGRAM

DECISION MAKING

RESULTS OUTPUT

E.T.S.I. Caminos, Canales y Puertos—Universidade da Coruña

Fortran Language (XXVII)

• FUNCTIONS:

♥ They are elemental subprograms that the user develops to evaluate functions

Type FUNCTION function name (list of arguments)
List of ’COMMON’
List of ’DIMENSION’ and ’ALLOCATABLE’
...Statements
RETURN
END

♥ Definition

-Tipo = INTEGER, REAL, ... If not specified depends on the first letter of the name

-name funcion = name of the function

-list of arguments = (optional) name of the variables sent as arguments separated by
commas

-list of common = (optional) name of the variables sent as common blocks (to be
seen later)

-Statements = Statements to be executed. The name of the function should appear
at least once as a variable

-RETURN = returns the control to the call statement.

E.T.S.I. Caminos, Canales y Puertos—Universidade da Coruña

Fortran Language (XXVIII)

• FUNCTIONS:

♥ Call from the main program

It is a direct assign statement such as:

variable = name funcion (list of arguments)

where:

-variable = stores the value returned by the function

-List of arguments: list of variables separated by commas sent to the function. They
must match in number, type and order. The names can be different.

E.T.S.I. Caminos, Canales y Puertos—Universidade da Coruña

Fortran Language (XXIX)

B e.g. function that obtains the module of a vector of m elements (m ≤ 10)

Main program.



implicit real*8(a-h,o-z)
implicit integer*4(i-n)
dimension v(10)
n=10
do i=1,n
v(i)=1.d+00

enddo
vmod=vecmod(v,n)
end

Function



function vecmod(w,m)
implicit real*8(a-h,o-z)
implicit integer*4(i-n)
dimension w(m)
vecmod=0.d+00
do i=1,m
vecmod=vecmod+w(i)*w(i)

enddo
vecmod=sqrt(vecmod)
return
end

♥ The variables sent as arguments keep the same position in the memory as in the main program.

♥ Thus, if they are modified inside the function, they are modified for the rest of modules, operations and
programs.

♥ variables not indicated in the list of arguments are local for the function and, even if their names coincide
they correspond to different memory positions

♥ At the end of the function execution, the local variables are deleted

E.T.S.I. Caminos, Canales y Puertos—Universidade da Coruña

Fortran Language (XXX)

• SUBROUTINES:

Subprograms that allow to return to the main program not only one value but a set of
results

SUBROUTINE name(list of arguments separated by commas)
list of “dimension”

... Statements

RETURN
END

The variables sent as arguments keep the same memory position as in the main program
and are global for all the program.

The variables defined inside the subroutine not sent as arguments are local and are
deleted at the end of it.

CAREFUL: The name of the subroutine can not appear as a variable

Call from the main program:

CALL name (list of arguments) (input and output arguments)

E.T.S.I. Caminos, Canales y Puertos—Universidade da Coruña

Fortran Language (XXXI)

B Example of a program using a subroutine:

Main program.



implicit real*8(a-h,o-z)
implicit integer*4(i-n)
dimension v(10)
n=10
do i=1,n
v(i)=1.d+00

enddo
call vmod(v,n,vmodulus)
end

Subroutine



subroutine vmod(w,m,wmod)
implicit real*8(a-h,o-z)
implicit integer*4(i-n)
dimension w(m)
wmod=0.d+00
do i=1,m
wmod=wmod+w(i)*w(i)

enddo
if (wmod.eq.(0.d+00))stop
wmod=sqrt(wmod)
do i=1,m
w(i)=w(i)/wmod

enddo
return
end

E.T.S.I. Caminos, Canales y Puertos—Universidade da Coruña

Fortran Language (XXXII)

• COMMON block:

Usually at the start of the declaration of variables

COMMON /name/ list of variables

B In all modules in which the COMMON block of a given name is declared, the
variables in the list (which must match in type) will occupy the same memory
position

B They are usually combined with the lists of arguments of subroutines and functions

B The COMMON block implicitly performs the DIMENSION of the variables of the list.

E.T.S.I. Caminos, Canales y Puertos—Universidade da Coruña

Fortran Language (XXXIII)

• Example:

Main Program.



implicit real*8(a-h,o-z)
common /vector/ v(10),n
implicit integer*4(i-n)
n=10
do i=1,n
v(i)=1.d+00

enddo
call vmod(vmodulus)
end

Subroutine



subroutine vmod(wmod)
common /vector/ w(10),m
implicit real*8(a-h,o-z)
implicit integer*4(i-n)
wmod=0.d+00
do i=1,m
wmod=wmod+w(i)*w(i)

enddo
wmod=sqrt(wmod)
return
end

E.T.S.I. Caminos, Canales y Puertos—Universidade da Coruña

Fortran Language (XXXIV)

I References:

• Fortran 77 for engineers and scientists with an introduction to Fortran 90, Larry
Nyhoff y Sandford Leestma, Prentice Hall, Upper Saddle River, NJ, USA, 1996

• Aprenda Fortran 8.0 como si estuviera en primero, Javier Garćıa de Jalón, Franciso de
Aśıs de Ribera, E.T.S. Ingenieros Industriales, Universidad Politécnica de Madrid, 2005

E.T.S.I. Caminos, Canales y Puertos—Universidade da Coruña

