
LINEAR ALGEBRA II Solutions to Practice 2.1-2.2

Euclidean Spaces. Orthogonality (Course 2022–2023)

Note: This is an unrevised automatic translation.

4.– In the vector space IR3 we consider the basis B = {(1, 0, 0), (1, 1, 0), (1, 1, 1)} and a scalar product whose
Gram matrix with respect to the base B is:

GB =

 1 1 0
1 2 1
0 1 2


Given the vectors ~v = (1, 0, 1), ~u = (0, 1, 1) calculate ~u · ~v, ‖u‖, ‖v‖ and the angle that they form.

To be able to do the calculations, first we obtain the Gram matrix of the scalar product with respect
to the canonical base:

GC = M t
BCGBMBC

where

MBC = M−1CB =

 1 1 1
0 1 1
0 0 1

−1 =

 1 −1 0
0 1 −1
0 0 1

 .

Operating:

GC =

 1 0 0
−1 1 0

0 −1 1

 1 1 0
1 2 1
0 1 2

 1 −1 0
0 1 −1
0 0 1

 =

 1 0 −1
0 1 0
−1 0 2


Now:

~u · ~v = ( 1 0 1 )GC

 0
1
1

 = 1

‖~u‖ = +
√
~u · ~u = +

√√√√√( 1 0 1 )GC

 1
0
1

 = 1

‖~v‖ = +
√
~v · ~v = +

√√√√√( 0 1 1 )GC

 0
1
1

 =
√

3

Finally:

ang(~u,~v) = arccos

(
~u · ~v
‖~u‖‖~v‖

)
= arccos

(
1√
3

)
= arccos

(√
3

3

)
.

5.– In IR3 f : IR3 × IR3 → IR is considered a scalar product fulfilling:

- The vector subspaces L{(1, 0, 1)} and L{(1, 1, 0), (0, 0, 1)} are orthogonal.

- The vectors (1, 1, 0) and (0, 0, 1) form an angle of π/3.

- The three previous vectors are unitary.

(i) Calculate the Gram matrix of the scalar product with respect to the canonical base.



We consider the base formed by the three vectors about which we have information:

B = {u1 = (1, 0, 1), u2 = (1, 1, 0), u3 = (0, 0, 1)}

They form a base because we have as many vectors as the dimension of the space IR3 and are also
independent because the matrix formed by their coordinates has rank 3. By definition of a Gram
matrix:

GB =

u1 · u1 u1 · u2 u1 · u3
u2 · u1 u2 · u2 u2 · u3
u3 · u1 u3 · u2 u3 · u3


From the orthogonality indicated in the first section we know that u1 · u2 = u1 · u3 = 0. From the fact
that they are unitary we know that u1 · u1 = u2 · u2 = u3 · u3 = 1. Finally we use the angle data:

u2 · u3 = ‖u2‖‖u3‖cos(π/3) =
1

2
.

From all this we deduce that:

GB =

 1 0 0
0 1 1/2
0 1/2 1


Finally we pass it to the base canonic:

GC = (MBC)tGBMBC

where

MBC = (MCB)−1 =

 1 1 0
0 1 0
1 0 1

−1 =

 1 −1 0
0 1 0
−1 1 1


Operating we obtain:

GC =

 2 −5/2 −1
−5/2 4 3/2
−1 3/2 1


( ii) Given U = L{(1, 1, 1), (1, 1, 2), (2, 2, 3)} compute a basis of its orthogonal subspace U⊥ with respect to

the given dot product.

First we calculate a basis of U by eliminating the possible dependent vectors between its generators: 1 1 1
1 1 2
2 2 3

 H21(−1)−→ H31(−2)−→

 1 1 1
0 0 1
0 0 1

 H32(−1)−→

 1 1 1
0 0 1
0 0 0


By therefore U = L{(1, 1, 1), (0, 0, 1)}. Now:

U⊥ = {(x, y, z) ∈ IR3|(x, y, z) · (1, 1, 1) = 0, (x, y, z) · (0, 0, 1) = 0} =

= {(x, y, z) ∈ IR3|(x, y, z)Gc(1, 1, 1)t = 0, (x, y, z) · (0, 0, 1)t = 0} =

= {(x, y, z) ∈ IR3| − 3

2
x+ 3y +

3

2
z = 0, −x+

3

2
y + z = 0} =

= {(x, y, z) ∈ IR3|y = 0, x = z} = L{(1, 0, 1)}.



8.– Given the symmetric matrix A =

 1 1 1
1 1 1
1 1 1

 find an orthogonal matrix P (P−1 = P t) such that

P−1AP is a diagonal matrix.

Since A is symmetric we know that we can diagonalize it orthogonally, that is, with respect to a basis
orthonormal; equivalently find an orthogonal matrix P such that P−1AP = P tAP is diagonal. The
steps are: - Calculate the eigenvalues. - Calculate the eigenvectors. - The eigenvectors associated to
different eigenvalues are orthogonal; those associated with the same eigenvalue must be orthogonalized
by Gram-Schmidt. - Finally we normalize the ortgonal basis of eigenvectors by dividing each one of
them by its norm. Let’s start by computing the characteristic polynomial:

pA(λ) = det

 1− λ 1 1
1 1− λ 1
1 1 1− λ

 = det

 3− λ 3− λ 3− λ
1 1− λ 1
1 1 1− λ

 =

= (3− λ)det

 1 1 1
1 1− λ 1
1 1 1− λ

 = (3− λ)det

 1 1 1
0 −λ 0
0 0 −λ

 = λ2(3− λ).

The eigenvalues are their roots. λ1 = 0 with algebraic multiplicity 2. λ2 = 3 with algebraic
multiplicity 1. Because it is symmetric we know that algebraic and geometric coincide. We calculate
the eigenvectors. Associated with λ1 = 0:

(A− 0 · Id)

x
y
z

 =

 0
0
0

 ⇐⇒ x+ y + z = 0.

Going from implicits to parametric we get:

x = α, y = β, z = −α− β

and from there
S0 = L{(1, 0,−1), (0, 1,−1)}.

Associated with λ2 = 3:

(A− 3 · Id)

x
y
z

 =

 0
0
0

 ⇐⇒ −2x+ y + z = 0, x− 2y + z = 0, x+ y − 2x = 0.

Eliminating dependent equations and solving the system we obtain the parametrics:

x = α, y = α, z = α

and from this
S3 = L{(1, 1, 1)}.

We orthogonalize the vectors of S0 = L{(1, 0,−1), (0, 1,−1)}, by the Gram-Schmidt method:

~u1 = (1, 0,−1)

~u2 = (0, 1,−1) + a(1, 0,−1)

Imposing that ~u1 · ~u2 = 0 and isolating a:

a =
−(1, 0,−1) · (0, 1,−1)

(1, 0,−1) · (1, 0,−1)
=
−1

2
.

from
where ~u2 = (0, 1,−1) − (1/2)(1, 0,−1) = (−1/2, 1,−1/2). Then S0 = L{(1, 0,−1), (−1/2, 1,−1/2)}
and:

B = {(1, 0,−1), (−1/2, 1,−1/2)︸ ︷︷ ︸
S0

, (1, 1, 1)︸ ︷︷ ︸
S3

}



is an orthogonal basis. We normalize it by dividing each vector by its norm:

(1, 0,−1)

‖(1, 0,−1)‖
= (1/

√
2, 0,−1/

√
2)

(−1/2, 1,−1/2)

‖(1, 0,−1)‖
= (−2/

√
5, 1/
√

5,−2
√

5)

(1, 1, 1)

‖(1, 1, 1)‖
= (1/

√
3, 1/
√

3, 1/
√

3)

Placing the three vectors as columns of a matrix we have:

P =

 1/
√

2 −2/
√

5 1/
√

3
0 1/

√
5 1/

√
3

−1/
√

2 −2/
√

6 1/
√

3

 , withP−1AP = D

being D the diagonal matrix formed by the eigenvalues:

D =

 0 0 0
0 0 0
0 0 3

 .

9.– In IR3 a bilinear form f is considered whose associated matrix in the canonical base is: 1 1 1
1 2 2
1 2 5



(i) Prove that it is a dot product.

For it to be a dot product it has to be a bilinear form, symmetric and positive definite:

- Bilinearity is a given of the statement.

- The symmetry is a consequence of the fact that the associated matrix is symmetric.

- To see that it is positive definite we can use Sylvester’s criterion: we must verify that the successive
determinants of the first k rows and columns are positive for k = 1, 2, 3:

| 1 | = 1 > 0,

∣∣∣∣ 1 1
1 2

∣∣∣∣ = 2− 1 = 1 > 0,

∣∣∣∣∣∣
1 1 1
1 2 2
1 2 5

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 1 1
0 1 1
0 1 4

∣∣∣∣∣∣ = 4− 1 = 3 > 0.

(ii) With respect to the dot product defined by f :

(ii.a) Find the associated matrix with respect to the canonical basis of the orthogonal projection over
L{(1, 0, 0)}.

We first compute a basis of the subspace orthogonal to the given V = L{(1, 0, 0)}:

V ⊥ = {(x, y, z) ∈ IR3|(x, y, z) · (1, 0, 0) = 0}

where

(x, y, z) · (1, 0, 0) = 0 ⇐⇒ (x y z )

 1 1 1
1 2 2
1 2 5

x
y
z

 = 0 ⇐⇒ x+ y + z = 0.



We go from implicits to parametrics and then to generators:

z = −x− y

from where the parametrics are:

x = a, y = b, z = −a− b

y
V ⊥ = L{(1, 0,−1), (0, 1,−1)}.

We form a base with the generators of V and V ⊥:

B = {(1, 0, 0)︸ ︷︷ ︸
V

, (1, 0,−1), (0, 1,−1)︸ ︷︷ ︸
V ⊥

}

on this basis we know that the projection matrix is:

PB =

 1 0 0
0 0 0
0 0 0

 .

Finally we pass it to the canonical:

PB = MCBPBM
−1
CB , where MCB =

 1 1 0
0 0 1
0 −1 −1

 .

Operating we get:

PC =

 1 1 1
0 0 0
0 0 0

 .

(ii.b) Find an orthogonal basis of the subspace U = {(x, y, z) ∈ IR3|x+ y + z = 0}.

First we find a basis of the subspace. We have done it in the previous section since it coincides with
V ⊥:

U = L{(1, 0,−1), (0, 1,−1)}.
Now we orthogonalize the base by the Gram-Schmidt method. The first vector remains equal to
v1 = (1, 0,−1). we seek a second vector of the form:

v2 = (0, 1,−1) + a(1, 0,−1)

We choose a by requiring that it be orthogonal to the first:

v2 · v1 = 0 ⇐⇒ (0, 1,−1) · (1, 0,−1) + a(1, 0,−1) · (1, 0,−1) = 0 ⇐⇒ a =
−(0, 1,−1) · (1, 0,−1)

(1, 0,−1) · (1, 0,−1)

We do the math:

(0, 1,−1) · (1, 0,−1) = ( 0 1 −1 )

 1 1 1
1 2 2
1 2 5

 1
0
−1

 = 4

(1, 0,−1) · (1, 0,−1) = ( 1 0 −1 )

 1 1 1
1 2 2
1 2 5

 1
0
−1

 = 4

Result:

a =
−(0, 1,−1) · (1, 0,−1)

(1, 0,−1) · (1, 0,−1)
=
−4

4
= −1, ⇒ v2 = (0, 1,−1)− (1, 0,−1) = (−1, 1, 0).

The requested base is:
{(1, 0,−1), (−1, 1, 0)}



10.– Let P1(IR) the vector space of polynomials of degree less than or equal to 1. A bilinear form
f : P1(IR) × P1(IR) → IR is considered, whose associated matrix with respect to the canonical basis
is:

FC =

(
1 1
1 5

)
.

(i) Prove that f is a dot product.

A dot product is a bilinear, symmetric, positive definite form. That it is bilinear says the statement.
It is symmetric if its associated matrix is. And in this case it is evident that FC = F tC . To see that it
is positive definite, we diagonalize the associated matrix by congruence and check that it has signature
(2, 0):

FC =

(
1 1
1 5

)
H21(−1)−→ µ21(−1)−→

(
1 0
0 4

)
⇒ sign(f) = (2, 0).

(ii) With respect to the dot product defined by f :

(ii.a) Give two polynomials that form an orthonormal basis of P1(IR).

A basis B is orthonormal if and only if the associated matrix of the dot product with respect to it is
the identity. So we start by completing the previous diagonalization until we reach the identity:(

1 0
0 4

)
H21(1/2)−→ µ21(1/2)−→

(
1 0
0 1

)
= FB

Now we perform on the identity the same column operations performed in the diagonalization process:(
1 0
0 1

)
µ21(−1)−→

(
1 −1
0 1

)
µ21(1/2)−→

(
1 −1/2
0 1/2

)
= MCB

The columns of the matrix MCB are the coordinates of the vectors of the orthonormal basis B with
respect to the canonical basis C = {1, x}:

B = {(1, 0)C , (−1/2, 1/2)C} =

{
1,−1

2
+

1

2
x

}

(ii.b) Find the angle formed by the polynomials p(x) = 1 + x and q(x) = 1− x.

We know that:

ang(p(x), q(x)) = arcs

(
< p(x), q(x) >

‖p(x)‖‖q(x)‖

)
To be able to do the calculations using the matrix FC of the scalar product, we express the given
polynomials in coordinates with respect to the canonical base C:

p(x) = 1 + x = (1, 1)C , q(x) = 1− x = (1,−1)C .

Then:

< p(x), q(x) >= ( 1 1 )

(
1 1
1 5

)(
1
−1

)
= −4

Now the norms:

‖p(x)‖ =

√
( 1 1 )

(
1 1
1 5

)(
1
1

)
= 2
√

2

and

‖q(x)‖ =

√
( 1 −1 )

(
1 1
1 5

)(
1
−1

)
= 2

Finally:

ang(p(x), q(x)) = arcos

(
−4

2
√

2 · 2

)
= arcos

(
−1√

2

)
= 135o.



11.– Consider the real vector space IR3 endowed with the ordinary scalar product. Find the matrix F , in the
canonical basis, of a symmetric endomorphism f of IR3, knowing that the kernel of f is the subspace
L{(1, 1, 1)} and 3 is a double eigenvalue of f .

We know that the eigenvalues of f are 0 and 3 with multiplicities 1 and 2 respectively. Since
the characteristic subspaces are orthogonal to each other, the characteristic subspace relative to the
eigenvalue 3 is precisely the one orthogonal to S0 = L{(1, 1, 1)}:

S3 = S⊥0 = {(x, y, z)/x+ y + z = 0} = L{(1,−1, 0), (1, 0,−1)}

We look for an orthogonal basis of this subspace. We take ū1 = (1,−1, 0) and

ū2 = aū1 + (1, 0,−1);

such that ū1 · ū2 = 0. We get a = −1/2 and:

S3 = L{(1,−1, 0), (1/2, 1/2,−1)}

Therefore, the matrix of f in the base {(1, 1, 1), (1,−1, 0), (1/2, 1/2,−1)} is: 0 0 0
0 3 0
0 0 3


Changing the base gives us the matrix we are looking for: 1 1 1/2

1 −1 1/2
1 0 −1

 0 0 0
0 3 0
0 0 3

 1 1 1/2
1 −1 1/2
1 0 −1

−1 =

 2 −1 −1
−1 2 −1
−1 −1 2


(Final exam, September 2002)

14.– Find the Gram matrix with respect to the canonical basis of a scalar product, knowing that:

- The vectors (1, 0) and (0, 1) form a angle of 60 degrees.

- ‖(1, 1)‖ =
√

3. - B = {(1, 0), (1,−2)} is an orthogonal basis.

We know that the Gram matrix of a scalar product is symmetric:

GC =

(
a b
b c

)
Since b is an orthogonal basis:

(1, 0) · (1,−2) = 0 ⇐⇒ ( 1 0 )GC

(
1
−2

)
= 0 ⇐⇒ a− 2b = 0.

Given that ‖(1, 1)‖ =
√

3:

3 = ‖(1, 1)‖2 = (1, 1) · (1, 1) ⇐⇒ 3 = ( 1 1 )GC

(
1
1

)
= a+ 2b+ c = 3

From these two equations we already have that :

a = 2b, c = 3− 4b ⇒ GC =

(
2b b
b 3− 4b

)
Finally if the vectors (1, 0) and (0, 1) form a angle of 60 degrees:

(1, 0) · (1, 0) = ‖(1, 0)‖‖(0, 1)‖cos(60)



where:

‖(1, 0)‖2 = (1, 0) · (1, 0) = ( 1 0 )GC

(
1
0

)
= 2b

‖(0, 1)‖2 = (0, 1) · (0, 1) = ( 0 1 )GC

(
0
1

)
= 3− 4b

(1, 0) · (0, 1) = ( 1 0 )GC

(
0
1

)
= b

We are left with:

b =
√

2b(3− 4b) · 1

2

Removing denominators and squaring:

4b2 = 6b− 8b2 ⇐⇒ 2b2 = b

where b = 0 ór b = 1/2. If b = 0 then GC = 0 and that is not possible because it is the matrix of a

positive definite scalar product. So b = 1/2 and GC =

(
1 1/2

1/2 1

)
.


