1.- In the affine space \mathbb{R}^{3} we consider the canonical reference R and the reference

$$
R^{\prime}=\{(1,0,1) ;(1,1,0),(1,1,1),(1,0,0)\} .
$$

We denote respectively by (x, y, z) and $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ the coordinates of a point with respect to the references R and R^{\prime}. Find the equations of the plane $x+y-2 z+1=0$ in the reference R^{\prime}.
(Final exam, July 2014)
2.- In the ordinary affine Euclidean space and relative to a rectangular affine coordinate system, we consider the points $A(2,-1,1), B(-1,0,3)$, the lines

$$
r: \frac{x+1}{3}=\frac{y-2}{1}=\frac{z}{1}, \quad s: \frac{x}{1}=\frac{y}{2}=\frac{z}{-3}
$$

and the planes $\quad P: 3 x-2 y+4 z+8=0, \quad Q: x+5 y-6 z-4=0$.
Lines should be determined by means of their continuous equations and planes by their Cartesian equations. Determine
(a) Line parallel to r that passes through A.
(b) Line through B and parallel to P and Q.
(c) Plane parallel to P that passes through A.
(d) Plane passing through B and parallel to r and s.
(e) Line perpendicular to Q and passing through A.
(f) Plane perpendicular to s and passing through B.
(g) Line that passes through A and is perpendicular to both r and s.
(h) Plane perpendicular to both P and Q and passing through B.
(i) Plane that contains r and is perpendicular to P.
(j) Line that passes through A, is perpendicular to s and parallel to Q.
(k) Line that contains B, is parallel to Q and intersects r.
(l) Line that intersects r and s and passes through B.
(m) Line parallel to the direction given by $\bar{v}(1,1,2)$ and intersecting both the lines r and s.
(n) Line that passes through A, intersects s and is perpendicular to r.
(o) Plane perpendicular to P, parallel to r and passing through A.
(p) Line which is simultaneously orthogonal to r and s.
(q) Distances from A to B, from A to r, from B to P and from r to s.
(r) Angles formed by r and s, by s and Q and by P and Q.
3.- In an affine space, give the equation of a line passing through the point $P=(1,0,1)$ and orthogonally intersecting the line

$$
s \equiv\left\{\begin{aligned}
y+z & =4 \\
x+3 y & =11
\end{aligned}\right.
$$

Find also the distance between P and s.
(Final exam, July 2018)
4.- In the affine space \mathbb{R}^{3} an isosceles triangle $A B C$ is considered, with unequal angle at vertex C. It is known that it is contained in the plane $x+y+z=1, A=(2,-1,0), B=(0,-1,2)$, and it has an area of $4 \sqrt{3}$.
(i) Find the coordinates of vertex C.
(ii) Find the volume of the triangular pyramid that has triangle $A B C$ as its base and the origin as vertex.
(iii) Find the equations of a symmetry with respect to a line that transforms point A into point B and leaves C fixed.
(Final exam, June 2020)
5.- In the affine space \mathbb{R}^{3} we consider a scalar product whose Gram matrix with respect to the canonical basis is:

$$
G_{C}=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right)
$$

Find the distance between the point $(-4,1,0)$ and the line r of equations:

$$
r \equiv\left\{\begin{array}{l}
x+y-z=1 \\
x-y+z=3
\end{array}\right.
$$

(Final exam, May 2018)

6.- In the affine three-dimensional space, obtain the equations of a rotation of 90° with respect to the semi-axis with equation

$$
(x, y, z)=(1,0,0)+\lambda(3,0,4), \quad \lambda \in \mathbb{R}, \lambda>0
$$

(Final exam, May 2016)
7.- In the Euclidean affine plane \mathbb{R}^{2} let A, B, C be the vertices of an equilateral triangle located in the half-plane $y \geq 0$, with $A=(0,0)$ and $B=(2,1)$.
(i) Find the coordinates of C.
(ii) Find the equations of a symmetry with respect to a line which takes the vertex A to the vertex B.
(Final exam, May 2022)
8.- In the Euclidean affine plane, find the equations of a symmetry that takes the line $x=0$ to the line $3 x+4 y-4=0$. Is the solution unique?
(Final exam, May 2018)
9.- In the Euclidean affine space \mathbb{R}^{3} consider the tetrahedron with vertices $A=(0,0,0)$, $B=(1,1,0), C=(0,0,1)$ and $D=(1,0,-1)$. Obtain its area and its volume.
(Final exam, May 2023)
10.- In the affine space \mathbb{R}^{2} the points $A=(0,0)$ and $B=(8,6)$ are considered.
(i) Compute the implicit equation of the locus of points C in the plane that make $A B$ the hypotenuse of a right triangle $A B C$.
(ii) If $P=(4,14 / 3)$ is the centroid of one of the triangles indicated in the previous section, find its area and its perimeter.
(iii) Find the equations of a homothety which takes the point A to the point B and the point B to the point A.
(Exam July, May 2020)
11.- In the three-dimensional affine space we consider a regular pyramid with a square base. We denote by A, B, C, D the four vertices of the base and by E the upper vertex. Knowing that the base is contained in the plane $z=0$, that $A=(0,0,0)$ and $C=(4,2,0)$ are opposite vertices of the base and that the height of the pyramid is 5 , obtain:
(i) The coordinates of the three remaining vertices.
(ii) The volume of the pyramid.
(Final exam, May 2017)
12.- Give the equation of a homothety that transforms the first figure into the second one:

(Final exam, July 2011)
13.- In the affine plane consider be the points $A(-1,0)$ and $P(1,0)$. Calculate the implicit equation of the locus of points B in the plane such that $A B$ is one of the equal sides of an isosceles triangle whose orthocenter is P. What kind of curve is it?
(Final exam, May 2015)
14.- In the affine plane consider the circumference $c:(x-3)^{2}+y^{2}=3^{2}$ and the line $r: y-3=0$. For each line h passing through the origin, let A be the point of intersection (different from the origin) of c and h and let B be the point of intersection of r and h. Calculate the implicit equation of the locus of intersection points of the line parallel to the $O X$ axis through A and the line parallel to the $O Y$ axis through B.
15.- In the affine plane, consider the lines $r \equiv y-1=0$ and $s \equiv b e x-y=0$. For each point P on s, we draw a straight line l perpendicular to s passing through P. Let Q be the intersection point of r and l.
(i) Compute the implicit equation of the locus of all midpoints of P and Q.
(ii) Find the angle between the lines r and s.
(Final exam, May 2014)
16.- In the Euclidean affine space and relative to the canonical reference, we consider the points $A=(1,0,0)$ and $B=(1,2,2)$.
(i) Find the locus of points that are equidistant from A and B.
(ii) Find the coordinates of a point C on the plane $z=2$, such that the triangle $A B C$ is isosceles with $A B$ as the unequal side and has area $2 \sqrt{3}$. Is the solution unique?
(Final exam, June 2013)

