1.- Consider the Euclidean vector space \mathbb{R}^{3} and a fixed orthonormal basis in it. Obtain the matrix expression, relative to this basis, of:
(a) the orthogonal symmetry with respect to the subspace $\mathcal{L}\{(1,1,1)\}$;
(b) the orthogonal symmetry with respect to the subspace $\mathcal{L}\{(1,1,1),(2,0,1)\}$;
(c) the rotation of 60° around the semi-axis that contains $(1,1,1)$ (considering in \mathbb{R}^{3} the orientation corresponding to the starting basis).
2.- In the Euclidean vector space \mathbb{R}^{3} find the equations of a rotation of angle 90° and semi-axis generated by the vector $(3,0,4)$.
(Final exam, July 2017)
3.- On \mathbb{R}^{3} we consider the scalar product whose Gram matrix with respect to the canonical basis is:

$$
G=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 3
\end{array}\right)
$$

Find the associated matrix with respect to the canonical basis of a rotation of 36.87°, with a semi-axis generated by the vector $(1,0,0)$ and considering the positive orientation given by the canonical basis. Observation: $\sin \left(36.87^{\circ}\right)=\frac{3}{5}$.
(Extraordinary exam, December 2008)
4.- In the Euclidean space \mathbb{R}^{3} with the usual scalar product, we consider the endomorphism $t: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ whose associated matrix relative to the canonical basis is:

$$
T_{C}=\left(\begin{array}{rrr}
-1 / 3 & 2 / 3 & 2 / 3 \\
2 / 3 & 2 / 3 & -1 / 3 \\
2 / 3 & -1 / 3 & 2 / 3
\end{array}\right)
$$

(i) Prove that t is a orthogonal transformation.
(ii) Classify t indicating, if applicable, the angle and axis of rotation and/or the plane of symmetry.
(Final exam, July 2021)
5.- In the Euclidean space \mathbb{R}^{2} with the usual scalar product, we consider the endomorphism $t: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, t(x, y)=\left(\frac{3}{5} x+\frac{4}{5} y, \frac{4}{5} x-\frac{3}{5} y\right)$. Prove that t is an orthogonal transformation and describe it geometrically providing the angle of rotation or the axis of symmetry (whichever is appropriate).
(Final exam, July 2018)
6.- In the vector space \mathbb{R}^{3} we consider the usual scalar product and the positive orientation given by the canonical basis.
(i) The matrix of an endomorphism relative to the canonical basis is

$$
T_{C}=\left(\begin{array}{ccc}
1 / \sqrt{2} & 1 / 2 & 1 / 2 \\
0 & -1 / \sqrt{2} & 1 / \sqrt{2} \\
-1 / \sqrt{2} & 1 / 2 & 1 / 2
\end{array}\right)
$$

Prove that it is an orthogonal transformation and classify it, describing what it does geometrically.
(ii) Calculate the matrix associated with a symmetry with respect to the plane with equation $x+y-z=0$.
(iii) Is it possible to obtain the previous symmetry as the composition of two conveniently chosen rotations? Justify your answer.
(Final exam, July 2020)
7.- Decide whether the following assertions are true or false:
(i) If T is the matrix associated with an orthogonal transformation t in \mathbb{R}^{3} and $\operatorname{trace}(T)=2$ then t is a rotation of 60°.
(ii) If T is the matrix associated with an orthogonal transformation t in \mathbb{R}^{3} and $\operatorname{trace}(T)=0$ then t is a rotation of 120°.
(iii) In \mathbb{R}^{3} the composition of a symmetry with respect to a line with a symmetry with respect to a plane is a rotation .
(iv) If t is an orthogonal transformation on \mathbb{R}^{3} and $t(1,0,1)=(-1,0,-1)$ then it is an inverse transformation.
(Final exam, June 2021)
8.- Justify whether the following assertions are true or false:
(i) If T is the matrix of an orthogonal transformation in \mathbb{R}^{2} and $\operatorname{trace}(T)=1$ then T is a rotation.
(ii) If T is the matrix of a rotation in \mathbb{R}^{2} then it has no real eigenvalues.
(iii) If we consider the Euclidean space \mathbb{R}^{3} with the usual conditions (usual scalar product and positive orientation given by the canonical basis), $T=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$ is the matrix of a symmetry with respect to the plane $x-y=0$. (0.5 points)
(iv) On the Euclidean space \mathbb{R}^{3} (usual conditions) an orthogonal transformation t is defined. Gauss holds that it is a rotation of 90 degrees and Euler says that it is a rotation of -90 degrees. Can they both be right?
(Final exam, June 2020)
9.- Let T be the matrix associated with an orthogonal transformation t in the Eculidean space \mathbb{R}^{3}. Knowing that $\operatorname{det}(T)<0, t(1,1,2)=(-1,-1,-2)$ and $\operatorname{trace}(T)=1$, classify and describe geometrically the transformation t.
(Final exam, May 2018)
10.- In \mathbb{R}^{2} with the usual scalar product, find the associated matrices with respect to the canonical basis of all possible inverse orthogonal transformations that take the line $x+y=0$ into the line $x-y=0$.
(Final exam, June 2021)
11.- In the Euclidean space \mathbb{R}^{3} with the usual scalar product we consider the planes $\pi_{1}: x+y-z=0$ and $\pi_{2}: 2 x-y+z=0$. Find the equations of a rotation that takes the plane π_{1} into the plane π_{2}.
12.- In \mathbb{R}^{2} with respect to the usual scalar product, consider a linear transformation $t: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ whose associated matrix with respect to the canonical basis is

$$
\left(\begin{array}{ll}
a & b \\
b & a
\end{array}\right)
$$

(i) Find a and b so that t is a symmetry with respect to a line.
(ii) For each of the values of a and b obtained in the previous section, calculate the axis of symmetry. (Final exam, May 2017)
13.- In the Euclidean space \mathbb{R}^{3} we consider the linear mapping $t: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ whose associated matrix with respect to canonical basis is

$$
T_{C}=\left(\begin{array}{ccc}
a & 0 & b \\
0 & 1 & 0 \\
b & 0 & a
\end{array}\right)
$$

(i) Study for which values of a and b, t is an orthogonal transformation.
(ii) For each of the previous cases, classify it and describe it geometrically.
(Final exam, May 2022)
14.- Justify the truth or falsehood of the following statements.
(i) The trace of the matrix associated with a symmetry with respect to a line in the plane is 0 .
(ii) If the matrix associated to an orthogonal transformation in the plane has trace 0 then it is a symmetry with respect to a line.
(iii) In a three-dimensional space, the symmetry with respect to a line is an inverse transformation.
(iv) In a three-dimensional space, the composition of a symmetry with respect to a point and a symmetry with respect to a plane is always a rotation.
(Final exam, June 2019)

