1.- We consider a basis $\left\{\bar{e}_{1}, \bar{e}_{2}, \bar{e}_{3}\right\}$ of a 3 -dimensional Euclidean space, such that the modulus of both \bar{e}_{1} and \bar{e}_{3} is 2 and \bar{e}_{2} is 1 , and besides, the angle formed by \bar{e}_{1} and \bar{e}_{3} is 90° and the one formed both by \bar{e}_{1} and \bar{e}_{2} and by \bar{e}_{2} and \bar{e}_{3} is 60°. We also consider the vectors

$$
\begin{aligned}
\bar{a} & =\bar{e}_{1}-\bar{e}_{2} \\
\bar{b} & =\bar{e}_{1}-2 \bar{e}_{2}+\bar{e}_{3}
\end{aligned}
$$

(a) Obtain the Gram matrix relative to the basis $\left\{\bar{e}_{1}, \bar{e}_{2}, \bar{e}_{3}\right\}$
(b) Obtain the modulus of \bar{a} and \bar{b}.
(c) Find the scalar product of \bar{a} and \bar{b}.
(d) Find a vector with module 2, which forms an angle of 90° with \bar{a} and one of 60° with \bar{b}.
2.- We consider on \mathbb{R}^{3} the scalar product whose Gram matrix with respect to the canonical basis is:

$$
G_{C}=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right)
$$

(i) Give a pair of vectors from the canonical basis that are orthogonal.
(ii) Given $U=\mathcal{L}\{(1,1,1),(1,1,2),(2,2,3)\}$ compute a basis of its orthogonal subspace U^{\perp}.
(iii) Find an orthonormal basis of \mathbb{R}^{3}.
(iv) Calculate the angle formed by the vectors $(1,0,0)$ and $(0,1,0)$.
(Final exam, May 2021)
3.- We consider on the vector space \mathbb{R}^{3} a scalar product whose Gram matrix with respect to the canonical basis is:

$$
G_{C}=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right)
$$

Calculate the associated matrix with respect to the canonical basis of the orthogonal projection mapping onto the vector subspace:

$$
V=\mathcal{L}\{(1,0,0),(0,1,0)\}
$$

(Final exam, June 2019)
4.- On the vector space \mathbb{R}^{3} we consider a scalar product whose Gram matrix with respect to the base $B=\{(1,0,0),(1,1,0),(1,1,1)\}$ is:

$$
G_{B}=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right)
$$

Given the vectors $\vec{v}=(1,0,1), \vec{u}=(0,1,1)$ compute $\vec{u} \cdot \vec{v},\|u\|,\|v\|$ and the angle formed by them.
(Final exam, July 2019)
5.- Let $f: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a scalar product satisfying the following conditions:

- The vector subspaces $\mathcal{L}\{(1,0,1)\}$ and $\mathcal{L}\{(1,1,0),(0,0,1)\}$ are orthogonal.
- The vectors $(1,1,0)$ and $(0,0,1)$ form an angle of $\pi / 3$.
- The three considered vectors are unitary.
(i) Find the Gram matrix of the scalar product with respect to the canonical basis.
(ii) Given $U=\mathcal{L}\{(1,1,1),(1,1,2),(2,2,3)\}$ compute a basis of its orthogonal subspace U^{\perp}, relative to the given scalar product.
(Final exam, May 2018)
6.- Let $f: \mathbb{R}^{3} \times \mathbb{R}^{3} \longrightarrow \mathbb{R}$ a bilinear form whose matrix relative to the canonical basis is

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 3 & 1 \\
0 & 1 & 2
\end{array}\right)
$$

(i) Prove that the bilinear form f defines a scalar product.
(ii) Obtain an orthonormal basis of $U=\mathcal{L}\{(1,0,1),(1,1,0),(3,2,1)\}$ relative to the scalar product f.
(Final exam, July 2021)
7.- Consider the map

$$
f: \mathcal{M}_{2 \times 2}(\mathbb{R}) \times \mathcal{M}_{2 \times 2}(\mathbb{R}) \rightarrow \mathbb{R}, \quad f(A, B)=\operatorname{trace}\left(A B^{t}\right)
$$

(i) Prove that f is a scalar product defined on the vector space $\mathcal{M}_{2 \times 2}(\mathbb{R})$.
(ii) Calculate the Gram matrix of f with respect to the canonical basis.
(iii) If $U=\mathcal{L}(I d)$, find a basis of the orthogonal subspace U^{\perp}.
(Final exam, July 2018)
8.- Given the symmetric matrix $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$ find an orthogonal matrix $P\left(\right.$ i. e. $\left.P^{-1}=P^{t}\right)$ such that $P^{-1} A P$ is a diagonal matrix.
9.- On \mathbb{R}^{3} we consider a bilinear form f whose associated matrix relative to the canonical basis is:

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 5
\end{array}\right)
$$

(i) Prove that it is a scalar product.
(ii) With respect to the scalar product defined by f :
(ii.a) Find the associated matrix of the orthogonal projection onto $\mathcal{L}\{(1,0,0)\}$ relative to the canonical basis .
(ii.b) Find an orthogonal basis of the subspace $U=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x+y+z=0\right\}$.
(Final exam, July 2022)
10.- Let $\mathcal{P}_{1}(\mathbb{R})$ be the vector space of all polynomials with degree less than or equal to 1 . We consider the bilinear form $f: \mathcal{P}_{1}(\mathbb{R}) \times \mathcal{P}_{1}(\mathbb{R}) \rightarrow \mathbb{R}$ whose associated matrix with respect to the canonical basis is:

$$
F_{C}=\left(\begin{array}{ll}
1 & 1 \\
1 & 5
\end{array}\right)
$$

(i) Prove that f is a scalar product.
(ii) With respect to the scalar product defined by f :
(ii.a) Give two polynomials that form an orthonormal basis of $\mathcal{P}_{1}(\mathbb{R})$.
(ii.b) Find the angle formed by the polynomials $p(x)=1+x$ and $q(x)=1-x$.
(Final exam, May 2022)
11.- Consider the real vector space \mathbb{R}^{3} endowed with the ordinary scalar product. Find the matrix F (relative to the canonical basis) of a symmetric endomorphism f of \mathbb{R}^{3}, knowing that the kernel of f is the subspace $\mathcal{L}\{(1,1,1)\}$ and 3 is a double eigenvalue of f.
(Final exam, September 2002)
12.- Let $f: \mathbb{R}^{3} \times \mathbb{R}^{3} \longrightarrow \mathbb{R}$ be a bilinear form whose associated matrix relative to the canonical basis is:

$$
F_{C}=\left(\begin{array}{ccc}
1 & 2 & 1 \\
2 & 6 & 0 \\
1 & 0 & a
\end{array}\right)
$$

(i) For which values of a is f a scalar product?
(ii) Find a so that the vectors $(1,0,1)$ and $(0,3,-1)$ are orthogonal with respect to the scalar product defined by f.
(iii) For $a=4$ and relative to the scalar product defined by f, give an orthonormal basis and calculate the angle formed by the vectors $(1,0,0)$ and $(0,1,0)$.
(Final exam, May 2015)
13.- We consider on \mathbb{R}^{3} the scalar product given by the Gram matrix

$$
G_{C}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 2 \\
0 & 2 & 5
\end{array}\right) .
$$

Fin the matrix associated to the orthogonal projection on the subspace:

$$
U=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x=0, \quad y+2 z=0\right\}
$$

relative to the canonical basis. What is the orthogonal projection of $(1,1,1)$ onto the subspace U?
(Final exam, July 2015)
14.- Find the Gram matrix (relative to the canonical basis) of a scalar product which satisfies:

- The vectors $(1,0)$ and $(0,1)$ form an angle of 60 degrees.
- $\|(1,1)\|=\sqrt{3}$.
- $B=\{(1,0),(1,-2)\}$ is an orthogonal basis.
(Final exam, July 2017)

