ÁLGEBRA LINEAL II

Práctica 1.1

Aplicaciones bilineales y formas cuadráticas

(Curso 2023–2024)

- 1.— Comprobar si las siguientes aplicaciones son o no bilineales y en las que resulten serlo, dar la matriz que las representa en las bases canónicas correspondientes. Decidir también si las formas bilineales son simétricas o antisimétricas.
- (a) $f: \mathbb{R}^2 \times \mathbb{R}^2 \longrightarrow \mathbb{R}$, $f((x_1, x_2), (y_1, y_2)) = 2x_1y_2 3x_1y_1$
- (b) $g: \mathbb{R}^2 \times \mathbb{R}^2 \longrightarrow \mathbb{R}$, $g((x_1, x_2), (y_1, y_2)) = x_1 x_2 + y_1 y_2$
- (c) $h: \mathbb{R}^3 \times \mathbb{R}^3 \longrightarrow \mathbb{R}$, $h((x_1, x_2, x_3), (y_1, y_2, y_3)) = 5x_1y_1 + 4x_1y_2 + 1 x_2y_1 + 5x_3y_1$
- (d) $l: \mathcal{M}_{2\times 2}(\mathbb{R}) \times \mathcal{M}_{2\times 2}(\mathbb{R}) \longrightarrow \mathbb{R}, \quad l(A, B) = \operatorname{tr} AB$
- (e) $m: \mathcal{P}_2(\mathbb{R}) \times \mathcal{P}_2(\mathbb{R}) \longrightarrow \mathbb{R}$, m(p,q) = p(1)q(-1) p(-1)q(1)
- **2.** Dada la forma cuadrática $w: \mathbb{R}^2 \longrightarrow \mathbb{R}, w(x,y) = x^2 + 4xy + 3y^2$:
- (i) Clasificarla indicando su rango y signatura.
- (ii) Hallar una base de vectores conjugados.
- (iii) Hallar los vectores autoconjugados, expresándolos de la manera más sencilla posible (dar el resultado respecto de la base canónica).
- (iv) Calcular la matriz asociada a w en la base:

$$B = \{(1,1), (1,-1)\}$$

- (v) Si f es la forma bilineal simétrica asociada a w calcular f((2,1),(1,3)).
- **3.** Dada la forma cuadrática $w: \mathbb{R}^3 \longrightarrow \mathbb{R}$, $w(x,y,z) = x^2 + 2xy + 2xz + 2yz + z^2.$
- (i) Calcular la matriz asociada a w en la base canónica. Clasificar la forma cuadrática indicando su rango y signatura.
- (ii) Calcular una base de vectores conjugados.
- (iii) Hallar los vectores autoconjugados descomponiéndolos, si es posible, como unión de dos planos.
- (iv) Si f es la forma bilineal simétrica asociada a w calcular f((1,0,1),(0,1,0)).

(Examen final, julio 2018)

4.— Sea $\mathcal{P}_2(\mathbb{R})$ el espacio vectorial de polinomios de grado menor o igual que 2. Se considera la aplicación:

$$f: \mathcal{P}_2(\mathbb{R}) \times \mathcal{P}_2(\mathbb{R}) \longrightarrow \mathbb{R}, \qquad f(p(x), q(x)) = \int_{-1}^1 p(x)q(x)dx - 2p(0)q(0).$$

- (i) Probar que f es una forma bilineal simétrica.
- (ii) Calcular la matriz asociada a f en al base canónica.
- (iii) Dar un conjunto de polinomios que forme una base de vectores conjugados.
- (iv) Calcular los polinomios autoconjugados.

(v) Clasificar la forma cuadrática asociada a f.

(Examen final, julio 2012)

- **5.** Dado $a \in \mathbb{R}$, se define la forma cuadrática $w : \mathbb{R}^2 \to \mathbb{R}$ como $w(x,y) = x^2 + 2axy + y^2$.
 - (i) Clasificar w en función de a indicando además su rango y signatura.
- (ii) Para a = 2 dar una base de vectores conjugados.
- (iii) Para a = 0 y a = 1 hallar los vectores autoconjugados.
- (iv) ¿Para qué valores de a existe una base B en la cual la matriz asociada a f es $F_B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$?.
- (v) Si f es la forma bilineal asociada a w hallar f((1,2),(2,3)) para a=-1.

(Examen final, mayo 2023)

6.— En \mathbb{R}^3 se considera la forma cuadrática dada por:

$$w(x, y, z) = ax^2 + y^2 + 4xy + 2axz.$$

- (i) Clasificarla en función de a indicando además en cada caso su rango y signatura.
- (ii) Para a = 0 hallar los vectores autoconjugados, expresándolos si es posible como unión de dos planos.

(Examen parcial, febrero 2015)

7.— Para cada valor de $k \in \mathbb{R}$ se define la forma cuadrática:

$$w: \mathbb{R}^3 \to \mathbb{R}, \qquad w(x, y, z) = x^2 + 2kxy - z^2 + 2yz$$

- (i) Clasificar w en función de los valores de k, indicando su rango y signatura.
- (ii) Para k = 1 hallar los vectores autoconjugados. Expresar el resultado de la manera más sencilla posible y con respecto a la base canónica.
- (iii) Dar un vector que sea autoconjugado para cualquier valor de k.
- (iv) Calcular k para que los vectores (1,0,0) y (0,1,0) sean conjugados.
- (v) ¿Existe algún valor de k para los cuales no existan vectores autoconjugados no nulos?.

(Examen final, junio 2020)

- **8.** De una forma cuadrática $w: \mathbb{R}^3 \to \mathbb{R}$ se sabe:
 - Los vectores $B = \{(1,1,1), (1,1,0), (1,0,0)\}$ son una base de vectores conjugados.
 - El vector (0, 1, 1) está en el núcelo de la forma cuadrática.
 - -w(1,1,0)=2.
 - (i) Hallar la matriz asociada a w en la base canónica.
- (ii) Clasificar la forma cuadrática en función de su rango y signatura.
- (iii) Hallar los vectores autoconjugados. Si es posible, expresarlos como unión de dos planos, dando en la base canónica un generador de cada una de ellas.
- (iv) Si f es la forma bilineal simétrica asociada a w, calcular f((1,1,0),(1,2,-1)).

(Examen final, julio 2021)

9	Sea $\mathcal{P}_1(\mathbb{F}$	(R) el e	espacio	vectorial d	e polino	mios de	grado	menor o	igual o	aue 1.	Se	define	la a	aplica	ción:

$$f: \mathcal{P}_1(\mathbb{R}) \times \mathcal{P}_1(\mathbb{R}) \to \mathbb{R}, \qquad f(p(x), q(x)) = p(1)q(1) - p'(1)q'(1)$$

- (i) Demostrar que f es una forma bilineal simétrica.
- (ii) Clasificar f indicando además su rango y signatura.
- (iii) Dar un par de polinomios que formen una base de vectores conjugados respecto de f.
- (iv) Calcular el conjunto de vectores autoconjugados. Si puede escribirse como unión de dos subespacios de dimensión 1 dar un generador de cada uno de ellos.
- (v) Hallar w(1+2x) siendo w la forma cuadrática asociada a f.

(Examen final, julio 2023)

- **10.** Sea $w: \mathbb{R}^3 \longrightarrow \mathbb{R}$ una forma cuadrárica. Se sabe que:
 - Los vectores $\{(1,1,0),(0,1,0),(1,1,1)\}$ son una base de vectores conjugados.
 - w tiene rango 1.
 - (0,1,0) es un vector autoconjugado.
 - -w(1,2,0)=1.
 - i) Hallar la matriz asociada a w respecto de la base canónica.
 - ii) Clasificar w.
 - iii) Hallar todos los vectores autoconjugados de w.

(Examen final, julio 2013)

- **11.** De una forma bilineal simétrica $f: \mathbb{R}^3 \times \mathbb{R}^3 \longrightarrow \mathbb{R}$ se sabe que:
 - $ker(f) = \mathcal{L}\{(1,0,1)\}.$
 - Los vectores (1,0,0) y (1,1,1) son conjugados respecto de f.
 - Si w es la forma cuadrátrica asociada a f, w(1,0,0)=w(1,1,1)=2.

Se pide:

- (i) Hallar la matriz asociada a F respecto de la base canónica.
- (ii) Clasificar la forma cuadrática w indicando además su rango y signatura.
- (iii) Dar una base de vectores conjugados respecto de w.
- (iv) Calcular los vectores autoconjugados.

(Examen final, junio 2019)

12.— Sea $w : \mathbb{R}^n \longrightarrow \mathbb{R}$ una forma cuadrática y $u, v \in \mathbb{R}^n$ verificando w(u) = 1, w(v) = -1. Probar que $\{u, v\}$ son linealmente independientes. ¿Es necesariamente w una forma cuadrática indefinida?.

(Examen final, junio 2009)

- 13.— En cada uno de los siguientes apartados dar una matriz no diagonal asociada a una forma cuadrática w de \mathbb{R}^3 que cumpla además la condición indicada (justificar las respuestas).
 - (i) w es definida positiva.
 - (ii) w es semidefinida negativa.
 - (iii) w es indefinida y no degenerada.
 - (iv) w es indefinida y degenerada.

(Examen final, julio 2022)

- **14.** Sea $w: \mathbb{R}^3 \to \mathbb{R}$ una forma cuadrática **no degenerada** en \mathbb{R}^3 y F_C su matriz asociada en la base canónica. Razona la veracidad o falsedad de las siguientes cuestiones:
 - (i) Si todos los elementos de la diagonal de F_C son positivos entonces w es definida positiva.
 - (ii) Si algún elemento de la diagonal de ${\cal F}_C$ es nulo entonces w es indefinida.
 - (iii) F_C^2 es la matriz asociada a una forma cuadrática definida positiva.
 - (iv) Si $F_C = Id$ entonces $f((x_1, x_2, x_3)_B, (y_1, y_2, y_3)_B) = x_1y_1 + x_1y_3 + 2x_2y_2 + x_3y_1 + 3x_3y_3$ puede ser la expresión de una forma bilineal simétrica asociada a w, en una base B.
 - (v) f((x, y, z), (x', y', z')) = xx' + xy' + yx' + yy' + zz' puede ser la expresión de una forma bilineal simétrica asociada a w.

(Examen final, julio 2020)

- 15.— Analizar razonadamente la veracidad o falsedad de las siguientes afirmaciones:
 - (i) Si w es una forma cuadrática en \mathbb{R}^2 de rango 1 entonces no puede ser indefinida.
 - (ii) Si $A \in \mathcal{M}_{3\times 3}(\mathbb{R})$ es una matriz asociada a una forma cuadrática w y verifica $a_{11} = 1$, $a_{22} = 1$ y $a_{33} = 0$ entonces w es semidefinida positiva.
 - (iii) Si $A \in \mathcal{M}_{3\times 3}(\mathbb{R})$ es una matriz asociada a una forma cuadrática w y verifica $a_{11}=1, a_{22}=1$ y $a_{33}=-1$ entonces w es indefinida.
 - (iv) $\begin{pmatrix} 1 & 2 \\ 2 & 0 \end{pmatrix}$ y $\begin{pmatrix} 3 & 6 \\ 6 & 5 \end{pmatrix}$ pueden ser matrices asociadas a una misma forma cuadrática respecto a diferentes bases
 - (v) Si $A \in \mathcal{M}_{2015 \times 2015}(\mathbb{R})$ es la matriz asociada a una forma cuadrática semidefinida negativa, entonces det(A) < 0.

(Examen parcial, mayo 2015)

ÁLGEBRA LINEAL II

Problemas adicionales

Aplicaciones bilineales y formas cuadráticas

(Curso 2023–2024)

- **I.** Sea E espacio vectorial sobre el cuerpo K y $f,g:E\longrightarrow K$ lineales. Se define la aplicación $\phi:E\times E\longrightarrow K,\quad \phi(\bar x,\bar y)=f(\bar x)g(\bar y).$
- (a) Demostrar que ϕ es bilineal.
- (b) Determinar la matriz de ϕ en una base $\{\bar{e}_1, \dots, \bar{e}_n\}$ en función de las matrices de f y g en esa misma base.
- (c) ¿Es ϕ simétrica? ¿Es antisimétrica?
- II.— En el espacio vectorial real \mathbb{R}^3 , hallar la expresión matricial en la base canónica de una forma cuadrática que cumple que:
 - el vector (1,1,0) es autoconjugado,
 - el vector (2,0,1) pertenece al núcleo,
 - la forma cuadrática aplicada en (0,1,0) da 2 y
 - la forma polar asociada a esta forma cuadrática aplicada en los vectores (0,1,0) y (1,1,0) da -1.

(Examen extraordinario, septiembre 2001)

- III.— Sea $f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ una forma bilineal simétrica y w su forma cuadrática asociada. Se sabe que:
 - $ker(w) = \mathcal{L}\{(1,1)\}.$
 - -w(0,1)=2
 - (i) Calcular la matriz asociada a w en la base canónica.
 - (ii) Clasificar la forma cuadrática indicando además su rango y signatura.
 - (iii) Hallar una base de vectores conjugados.
 - (iv) Hallar los vectores autoconjugados.
 - (v) Calcular w(1,2).

(Examen final, mayo 2022)

IV.— Fijados $a, b \in \mathbb{R}$ se definie la forma cuadrática:

$$w: \mathbb{R}^4 \longrightarrow \mathbb{R}$$
, $w(x, y, z, t) = x^2 + ay^2 + 2bxy + 2byt + 2bzt$

- (i) Hallar el rango, signatura y clasificar w en función de los valores a y b.
- (ii) Para aquellos valores para los cuáles la forma cuadrática es degenerada calcular una base del núcleo.
- (iii) Si $f: \mathbb{R}^4 \times \mathbb{R}^4 \longrightarrow \mathbb{R}$ es la forma bilineal simétrica asociada a w, para a=b=1 calcular f((1,1,0,0),(1,0,1,1)).

(Examen final, julio 2012)

- **V.** En coordenadas referidas a una determinada base $\{\bar{e}_1, \bar{e}_2\}$ de \mathbb{R}^2 , una forma cuadrática ω tiene la expresión $\omega(x,y)=x^2+2xy-y^2$. ¿Existe alguna base $\{\bar{v}_1,\bar{v}_2\}$ de \mathbb{R}^2 , con respecto a cuyas coordenadas la expresión de ω sea $\omega(u,v)=2uv+v^2$? En caso afirmativo, dar la nueva base en función de la anterior.
- **VI.** Para cada valor de $a \in \mathbb{R}$ se define la forma cuadrática $w : \mathbb{R}^3 \longrightarrow \mathbb{R}$ como, $w(x,y,z) = x^2 + 2axy + 4axz + az^2.$
 - (i) Calcular la matriz asociada a w en la base canónica y en la base $B = \{(1,0,1), (0,0,1), (-1,0,1)\}.$
 - (ii) Clasificar la forma cuadrática en función de los valores de a, indicando su rango y signatura.
 - (iii) Para a = 1 calcular una base de vectores conjugados.
 - (iv) Para a = 0 calcular el núcleo de w y los vectores autoconjugados.

(Examen final, mayo 2018)

VII.— Dado el espacio vectorial $\mathcal{P}_2(\mathbb{R})$ de polinomios de grado menor o igual que dos con coeficientes reales, definimos la aplicación:

$$f: \mathcal{P}_2(\mathbb{R}) \times \mathcal{P}_2(\mathbb{R}) \longrightarrow \mathbb{R}, \quad f(p(x), q(x)) = p'(1)q'(1) + p(-1)q(-1)$$

- i) Probar que f es una forma bilineal simétrica.
- ii) Hallar la matriz asociada a f respecto de la base canónica.
- iii) Escribir tres polinomios formando una base de $\mathcal{P}_2(\mathbb{R})$ respecto a la cual la matriz asociada a f sea diagonal.
- iv) Indicar el rango y la signatura de la forma cuadrática asociada a f.

(Examen final, diciembre 2009)

- **VIII.** En \mathbb{R}^3 hallar la matriz con respecto a la base canónica $\{\bar{e}_1, \bar{e}_2, \bar{e}_3\}$ de una aplicación bilineal f verificando:
 - f es simétrica.
 - $f(\bar{e}_2, \bar{e}_2) = f(\bar{e}_3, \bar{e}_3).$
 - Los vectores \bar{e}_1 y \bar{e}_2 son conjugados.
 - $f(x\bar{e}_1 + y\bar{e}_2, \bar{e}_3) = y.$
 - La forma cuadrática asociada a f y restringida al subespacio $\mathcal{L}\{\bar{e}_1,\bar{e}_2\}$ tiene rango 1 y restringida al subespacio $\mathcal{L}\{\bar{e}_2,\bar{e}_3\}$ es semidefinida negativa.
 - **IX.** Sea E un espacio vectorial real de dimensión 4 y $B = \{\bar{e}_i\}$ una base de E. Se considera la forma cuadrática ω cuya expresión en función de las coordenadas referidas a B es

$$\omega(\bar{x}) = 2(x_1)^2 + 2(x_2)^2 + 2(x_4)^2 + 4x_1x_2 - 4x_1x_4 - 2x_2x_3 - 4x_2x_4 - 4x_3x_4.$$

- (a) Clasificar la forma cuadrática y diagonalizarla por suma de cuadrados.
- (b) Determinar un subespacio vectorial de E de dimensión máxima tal que la restricción de ω a él sea una forma cuadrática semidefinida negativa.

 \mathbf{X} .— Consideremos la forma cuadrática ω de \mathbb{R}^4 que en la base canónica viene dada por la matriz:

$$A = \begin{pmatrix} 0 & 1 & -1 & 0 \\ 1 & 0 & 0 & -1 \\ -1 & 0 & 0 & -1 \\ 0 & -1 & -1 & 0 \end{pmatrix}$$

- (a) Calcular el rango y la signatura de ω .
- (b) Calcular, si existe, un vector distinto del nulo que sea autoconjugado.
- (c) Considérese el subespacio vectorial

$$V = \{(x, y, z, t) \in \mathbb{R}^4 / |x - y| + 2z = z + t = 0\}$$

y la restricción Ω de ω a V. Hallar una base de V y la matriz asociada a Ω en dicha base.

(Examen final, junio 2001)

XI.— En el espacio vectorial $\mathcal{P}_2(\mathbb{R})$ de polinomios de grado menor o igual que dos con coeficientes reales, para cada $a \in R$, se considera la aplicación dada por:

$$f: \mathcal{P}_2(\mathbb{R}) \times \mathcal{P}_2(\mathbb{R}) \longrightarrow R, \quad f(p(x), q(x)) = p(a)q(-a) + p(-a)q(a)$$

- i) Probar que es una forma bilineal simétrica.
- ii) Estudiar para que valores de a el conjunto $B_a = \{(x-a)^2, x^2, (x+a)^2\}$ es una base de $\mathcal{P}_2(\mathbb{R})$.
- iii) Para aquellos valores de a para los que tenga sentido, hallar la matriz asociada a f con respecto a la base B_a
- iv) Hallar el rango y la signatura de la forma cuadrática asociada a f en función del parámetro a.

(segundo parcial, mayo 2010)

- **XII.** Sean $w_1, w_2 : \mathbb{R}^n \longrightarrow \mathbb{R}$ dos forma cuadráticas semidefinidas positivas. Razonar la falsedad o veracidad de las siguientes afirmaciones:
 - (i) $w_1 + w_2$ es semidefinida positiva.
 - (ii) $-w_1 w_2$ no es indefinida.
 - (iii) $w_1 + w_2$ es definida positiva.

(Examen final, mayo 2011)

XIII.— En el espacio vectorial \mathbb{R}^3 y referido a la base canónica, se considera la familia de formas cuadráticas:

$$\omega: \mathbb{R}^3 \to \mathbb{R}, \qquad \omega(x, y, z) = ax^2 + by^2 + az^2 - 2xz, \qquad a, b \in \mathbb{R}.$$

Clasificar las formas cuadráticas en función de a y b.

(Examen final, septiembre 2005)

XIV.— En el espacio vectorial \mathbb{R}^3 se considera la familia de formas cuadráticas $\omega_a : \mathbb{R}^3 \to \mathbb{R}$ que en la base canónica tienen la siguiente expresión:

$$\omega_a(x, y, z) = 5x^2 + y^2 + 2z^2 + 2axy + 2xz - 2yz, \quad a \in \mathbb{R}.$$

Clasificarlas en función del parámetro a.

(Examen final, junio 2005)

 \mathbf{XV} - Consideramos el espacio vectorial \mathbb{R}^2 , la forma bilineal $f: \mathbb{R}^2 \times \mathbb{R}^2 \longrightarrow \mathbb{R}$ y la base $B = \{\vec{u}_1, \vec{u}_2\}$. Supongamos que

$$F_B = \begin{pmatrix} 1 & a \\ 2 & 1 \end{pmatrix}$$

donde $a \in \mathbb{R}$. Razonar la veracidad o falsedad de las siguientes afirmaciones:

- (i) Se verifica que $f(\vec{u}_1, \vec{u}_1 + \vec{u}_2) = a + 1$.
- (ii) Si a=-2, entonces f es antisimétrica.
- (iii) Si $\vec{v} \neq \vec{0}$, entonces $f(\vec{v}, \vec{v}) \neq 0$.

(Examen final, mayo 2012)