LINEAR ALGEBRA II
Affine geometry.

Exercises Unit III. Chapters 1 and 2

(Academic year 2022-2023)
1.- In the affine plane \mathbb{R}^{2} we consider the canonical reference $R=\{(0,0) ;(1,0),(0,1)\}$ and another reference $R^{\prime}=\{(1,2) ;(2,3),(3,4)\}$.
(a) If a point P has coordinates $(1,-2)_{R^{\prime}}$ in reference R^{\prime} calculate its coordinates in reference R.
(b) If a point Q has coordinates $(2,3)_{R}$ in the canonical reference, calculate its coordinates in the reference R^{\prime}.
2.-
(a) In the affine plane \mathbb{R}^{2} and with respect to the canonical reference calculate the vector, parametric, continuous and Cartesian equations of a straight line that passes through the point $(2,1)$ and has as $(1,3)$ as its direction vector.
(b) In the affine plane \mathbb{R}^{2} and with respect to the canonical reference, calculate the vector, parametric, continuous and Cartesian equations of a line which has the equation $2 x+3 y-5=0$.
3.-
(a) In the affine space \mathbb{R}^{3} and with respect to the canonical reference calculate the vector, parametric equations, continuous and Cartesian equations of a straight line that passes through the point $(2,0,-1)$ and has $(1,3,2)$ as its direction vector.
(b) In the affine space \mathbb{R}^{3} and with respect to the canonical reference calculate the vector, parametric, continuous and Cartesian equations of a line with equations

$$
\begin{aligned}
& x+y-2 z+1=0 \\
& 2 x-y-z+2=0
\end{aligned}
$$

4.-
(a) In the affine space \mathbb{R}^{3} and with respect to the canonical reference calculate the vector, parametric and Cartesian equations of a plane that passes through the point $(1,0,1)$ and has $(1,0,2)$ and $(1,1,0)$ as its direction vectors.
(b) In the affine space \mathbb{R}^{3} and with respect to the canonical reference calculate the vector, parametric and Cartesian equations of a plane that has the equation $x+2 y-z-2=0$.
\qquad
5.- In the Euclidean affine plane \mathbb{R}^{2} and with respect to a rectangular reference the following lines are considered:

$$
r \equiv x+2 y-4=0 \quad s \equiv x+y-3=0
$$

(a) Find the angle between the lines r and s.
(b) Find the distance from the point $(1,3)$ to the line r.
6.- In the Euclidean affine space \mathbb{R}^{3} and with respect to a rectangular reference, the following affine subspaces are considered:

$$
\pi \equiv x+y-2 z+1=0, \quad r \equiv(x, y, z)=(1,2,3)+t(0,1,0), \quad s \equiv(x, y, z)=(0,1,1)+s(1,1,2)
$$

(a) Find the angle formed by π and r.
(b) Find the distance from the point $(1,1,0)$ to the plane π.
(c) Find the distance between lines r and s.
7.- In the Euclidean affine plane \mathbb{R}^{2}, under the usual conditions and with respect to the canonical reference, calculate the equations of:
(a) a translation with respect to the vector $\vec{u}=(2,3)$.
(b) a homothety with center $(1,2)$ and ratio 4.
(c) a rotation with center $(1,-2)$ and angle 30 degrees.
(d) a symmetry with respect to the line $x+y=1$.
8.- In the Euclidean affine plane \mathbb{R}^{3}, under the usual conditions and with respect to the canonical reference, calculate the equations of:
(a) a translation with respect to the vector $\vec{u}=(1,0,2)$.
(b) a homothety with center $(1,2,-1)$ and ratio -2 .
(c) a rotation of angle 45 degrees with respect to the semi-axis $(x, y, z)=(1,0,0)+t(0,1,0), t>0$.
(d) a symmetry with respect to the plane $x+y-z=1$.

Solutions

1. (a) $(-3,-3)$. (b) $(-1,1)$.
2. (a) Vector: $(x, y)=(2,1)+t(1,3)$. Parametric: $\left\{\begin{array}{l}x=2+t \\ y=1+3 t\end{array}\right.$ Continuous: $\frac{x-2}{1}=\frac{y-1}{3}$. Cartesian: $3 x-y-5=0$. (b) Vector: $(x, y)=(1,1)+t(3,-2)$. Parametric: $\left\{\begin{array}{l}x=1+3 t \\ y=1-2 t\end{array}\right.$ Continuous: $\frac{x-1}{3}=\frac{y-1}{-2}$. Cartesian: $2 x+3 y-5=0$.
3. (a) Vector: $(x, y, z)=(2,0,-1)+t(1,3,2)$. Parametric: $\left\{\begin{array}{l}x=2+t \\ y=3 t \\ z=-1+2 t\end{array}\right.$ Continuous: $\frac{x-2}{1}=\frac{y}{3}=\frac{z+1}{2}$. Cartesian: $3 x y-6=0,2 y-3 z-3=0$. (b) Vectorial: $(x, y, z)=(-1,0,0)+t(1,1,1)$. Parametric: $\left\{\begin{array}{l}x=-1+t \\ y=t \\ z=t\end{array} \quad\right.$ Continuous: $\frac{x+1}{1}=\frac{y}{1}=\frac{z}{1}$. Cartesians: $x+y-2 z+1=0,2 x-y-z+2=0$.
4. (a) Vector: $(x, y, z)=(1,0,1)+t(1,0,2)+s(1,1,0)$. Parametric: $\left\{\begin{array}{l}x=1+t+s \\ y=s \\ z=1+2 t\end{array}\right.$ Cartesian:
$2 x-2 y-z-1=0 .\left(\right.$ b) Vector: $(x, y, z)=(2,0,0)+t(1,0,1)+s(2,-1,0)$. Parametric: $\left\{\begin{array}{l}x=2+t+2 s \\ y=-s \\ z=t\end{array}\right.$

Cartesian: $x+2 y-z-2=0$.
5. (a) $\arccos (3 / \sqrt{10})$. (b) $3 / \sqrt{5}$
6. (a) $\arcsin (1 / \sqrt{6})$. (b) $3 / \sqrt{6}$. (c) 0 (the lines intersect at the point $(1,2,3)$)
7. (a) $f(x, y)=(x+2, y+3)$ (b) $f(x, y)=(4 x-3,4 y-6)$. (c) $f\binom{x}{y}=\binom{1}{-2}+\left(\begin{array}{cc}\sqrt{3} / 2 & -1 / 2 \\ 1 / 2 & \sqrt{3} / 2\end{array}\right)\binom{x-1}{y+2}$.
(d) $f\binom{x}{y}=\binom{1}{0}+\left(\begin{array}{rr}0 & -1 \\ -1 & 0\end{array}\right)\binom{x-1}{y}$.
8. (a) $f(x, y, z)=(x+1, y, z+2)$ (b) $f(x, y)=(3-2 x, 6-2 y,-3-2 z)$. (c) $f\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)+$ $\left(\begin{array}{ccc}1 / \sqrt{2} & 0 & 1 / \sqrt{2} \\ 0 & 1 & 0 \\ -1 / \sqrt{2} & 0 & 1 / \sqrt{2}\end{array}\right)\left(\begin{array}{c}x-1 \\ y \\ z\end{array}\right)$. (d) $f\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)+\frac{1}{3}\left(\begin{array}{rrr}1 & -2 & 2 \\ -2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right)\left(\begin{array}{c}x-1 \\ y \\ z\end{array}\right)$.

