LINEAR ALGEBRA II
Bilinear mappings and quadratic forms

Exercises Unit I, Chapter 1

(Academic year 2022-2023)
1.- Find the matrix associated to each one of the following bilinear forms with respect to the canonical basis:
(a) $f: \mathbb{R}^{2} \times \mathbb{R}^{2} \longrightarrow \mathbb{R}, \quad f\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=x x^{\prime}+3 x y^{\prime}-y x^{\prime}+2 y y^{\prime}$
(b) $f: \mathbb{R}^{2} \times \mathbb{R}^{2} \longrightarrow \mathbb{R}, \quad f\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=x_{1} y_{2}-x_{2} y_{1}$
(c) $f: \mathbb{R}^{3} \times \mathbb{R}^{3} \longrightarrow \mathbb{R}, \quad f\left((x, y, z),\left(x^{\prime}, y^{\prime}, z^{\prime}\right)\right)=x x^{\prime}+2 x z^{\prime}-4 y y^{\prime}+2 z x^{\prime}+8 z z^{\prime}$
2.-
(a) Let $f: \mathbb{R}^{2} \times \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be a bilinear form whose associated matrix relative to the canonical basis is $F_{C}=\left(\begin{array}{rr}1 & 3 \\ -1 & 2\end{array}\right)$. Obtain $f((1,1),(3,2))$.
(b) Let $f: \mathcal{M}_{2 \times 2}(\mathbb{R}) \times \mathcal{M}_{2 \times 2}(\mathbb{R}) \longrightarrow \mathbb{R}$ be a bilinear form whose associated matrix relative to the canonical basis is $F_{C}=\left(\begin{array}{cccc}1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 1 & 3 & 1 & 1 \\ 0 & 2 & 1 & 0\end{array}\right)$. Obtain $f\left(\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right),\left(\begin{array}{ll}0 & 2 \\ 1 & 0\end{array}\right)\right)$.
3.- Let C be the canonical basis of \mathbb{R}^{2} and let $B=\{(3,2),(1,1)\}$.
(a) $F_{C}=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$ is the matrix associated to a certain bilinear form relative to the basis C. Obtain its associated matrix F_{B} relative to the basis B.
(b) $F_{B}=\left(\begin{array}{rr}1 & 1 \\ -1 & 2\end{array}\right)$ is the matrix associated to a certain bilinear form relative to the basis B. Obtain its associated matrix F_{C} relative to the basis C.
4.- Indicate whether the bilinear forms in Exercise 1 are symmetric, antisymmetric or neither one thing nor the other.
5.- Find the matrix associated to each one of the following quadratic forms relative to the canonical basis:
(a) $w: \mathbb{R}^{2} \longrightarrow \mathbb{R}, \quad w(x, y)=x^{2}-4 x y+4 y^{2}$.
(b) $w: \mathbb{R}^{3} \longrightarrow \mathbb{R}, \quad w(x, y, z)=x^{2}-4 x z+y^{2}-2 y z-z^{2}$.
(c) $w: \mathbb{R}^{3} \longrightarrow \mathbb{R}, \quad w(x, y, z)=x^{2}+2 x y+2 x z+2 y^{2}+4 y z+10 z^{2}$.
6.- For the quadratic form in item (a) of Exercise 5:
(a) Check if the following pairs of vectors are conjugate:
$(0,1)$ and $(1,0)$,
$(1,0)$ and $(2,1)$,
$(1,-1)$ and $(1,1)$,
$(0,1)$ and $(0,1)$
(b) Check if any of the following vectors is self-conjugate:

$$
(1,2), \quad(1,1)
$$

7.- Find the implicit equations of the kernel of each one of the quadratic forms in Exercise 5.
8.- Find the ranks of all the quadratic forms in Exercise 5.
9.- Find the signature of, and classify, all quadratic forms in Exercise 5, indicating whether they are degenerate or not, and whether they are definite (positive or negative), semi-definite (positive or negative) or inidefinite.

Solutions.

1. (a) $\left(\begin{array}{rr}1 & 3 \\ -1 & 2\end{array}\right)$.
(b) $\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)$.
(c) $\left(\begin{array}{rrr}1 & 0 & 2 \\ 0 & -4 & 0 \\ 2 & 0 & 8\end{array}\right)$.
2. (a) 10 (b) 14 .
3. (a) $F_{B}=\left(\begin{array}{cc}25 & 11 \\ 9 & 4\end{array}\right)$. (b) $F_{C}=\left(\begin{array}{rr}9 & -12 \\ -14 & 19\end{array}\right)$.
4. (a) Neither one nor the other. (b) Antisymmetric. (c) Symmetric.
5. (a) $\left(\begin{array}{rr}1 & -2 \\ -2 & 4\end{array}\right)$.
(b) $\left(\begin{array}{rrr}1 & 0 & -2 \\ 0 & 1 & -1 \\ -2 & -1 & -1\end{array}\right)$.
(c) $\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 10\end{array}\right)$.
6. (a) No. Yes. No. No. (b) No. No. Yes.
7. (a) $x-2 y=0$.
(b) $x=0, y=0, z=0$.
(c) $x=0, y=0, z=0$.
8. (a) 1 .
(b) 3 .
(c) 3 .
9.

(a) signature $=(1,0)$, degenerate, semi-definite positive.
(b) signature $=(2,1)$, not degenerate, indefinite.
(c) signature $=(3,0)$, not degenerate, definite positive.

