1.- Let $\mathcal{P}_{1}(\mathbb{R})$ be the vector space of all polynomials with degree less or equal to 1 . Consider the mapping:

$$
f: \mathcal{P}_{1}(\mathbb{R}) \times \mathcal{P}_{1}(\mathbb{R}) \rightarrow \mathbb{R}, \quad f(p(x), q(x))=p(1) q(1)-p^{\prime}(1) q^{\prime}(1)
$$

(i) Show that f is a symmetric bilinear form.
(ii) Classify f, also indicating its rank and signature.
(iii) Give two polynomials which form a basis of conjugate vectors with respect to f.
(iv) Calculate the set of self-conjugate vectors. If this set can be expressed as the union of two subspaces of dimension 1, give a generator of each of them.
(v) Find $w(1+2 x)$ where w is the quadratic form associated with f.
2.- We consider the Euclidean space \mathbb{R}^{3} with the scalar product with respect to which the basis $B=\{(1,1,1),(0,1,1),(0,0,1)\}$ is orthonormal.
(i) Find the Gram matrix of this scalar product with respect to the canonical basis.
(ii) Let $U=\mathcal{L}\{(1,0,0)\}$. Find the parametric equations of U^{\perp}.
(iii) Find the orthogonal projection of the vector $(2,1,0)$ onto the subspace U.
(1.1 points)
3.- In the Euclidean space \mathbb{R}^{3} we consider the endomorphism $t: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ whose associated matrix with respect to the canonical basis is:

$$
T_{C}=\left(\begin{array}{rrr}
2 / 3 & -1 / 3 & 2 / 3 \\
-1 / 3 & 2 / 3 & 2 / 3 \\
2 / 3 & 2 / 3 & -1 / 3
\end{array}\right)
$$

Show that t is an orthogonal transformation. Classify it and describe it geometrically.
(1 point)
4.- Let F be the matrix associated to the quadratic form w. Justify the truth or falsehood of the following assertions:
(i) If $\operatorname{trace}(F)>0$ then w is positive definite.
(ii) If $\operatorname{trace}(F)=0$ and $\operatorname{det}(F) \neq 0$ then w is indefinite.
(iii) If $\operatorname{det}(F)<0$ then w cannot be positive definite.
(iv) If $\operatorname{det}(F)<0$ then w is negative definite.
5.- In the affine Euclidean space \mathbb{R}^{3} find the equations of a symmetry with respect to a plane which transforms the point $(0,0,1)$ into the point $(2,2,1)$.
6.- In the affine Euclidean space \mathbb{R}^{2} consider the lines $r: x+y=1$ and $s: x=3$ and the point $P=(2,2)$.
(i) Find the equation of a line t which contains P in such a way that P is the midpoint of the points of intersection of t with the lines r and s.
(ii) Find the equations of a homothety which transforms the point P into the origin and transforms any shape into another one whose area is four times the initial one.
7.- In the affine plane for each $k \in \mathbb{R}$ consider the conic with equation

$$
x^{2}-2 k x y+y^{2}+2 y+1=0
$$

(i) Classify the conic in terms of the values of k.
(ii) For $k=2$ find its center, its axes and its eccentricity.
(iii) Show that the $O Y$ axis is tangent to the conic at a point P which does not depend on the value of k. Find P.
(1.3 points)
8.- Find the equation of a conic such that its eccentricity is $e=2$, the point $(4,2)$ is a focus, and the line $2 x+y-5=0$ is one of its axes.
9.- Given the quadric surface of equation:

$$
x^{2}+2 x z+4 y z+4 x+2 y+2 z=0
$$

classify the surface and sketch a drawing of it.

