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3. Linear maps.

1 Definition and properties.

Definition 1.1 Let U and V be two vector spaces over the field IK. We say that
f : U −→ V is a linear map or homomorphism if it satisfies:

1. f(x̄+ x̄′) = f(x̄) + f(x̄′), for any x̄, x̄′ ∈ U .

2. f(αx̄) = αf(x̄), for any α ∈ IK, x̄ ∈ U .

or equivalently:

3. f(αx̄+ βx̄′) = αf(x̄) + βf(x̄′), for any α ∈ IK, x̄, x̄′ ∈ U .

Remark 1.2 Let us see the equivalence between conditions 1., 2. and condition 3.:

1., 2. =⇒ 3.:

Given α ∈ IK, x̄, x̄′ ∈ U we have:

f(αx̄+ βx̄′) = f(αx̄) + f(βx̄′) = αf(x̄) + βf(x̄′).
↑ ↑

(1.) (2.)

3. =⇒ 1., 2.:

If we apply property 3. for α = β = 1 and any x̄, x̄′ ∈ U , we obtain property 1.

If we apply property 3. for β = 0, x̄′ = 0̄ and any α ∈ IK, x̄ ∈ U , we obtain
property 2..

We next collect some properties of linear maps:

a) f(−x̄) = −f(x̄).

Proof: We apply property 2. from the definition:

f(−x̄) = f((−1)x̄) = (−1)f(x̄) = −f(x̄).

b) f(x̄− x̄′) = f(x̄)− f(x̄′).

Proof: It is sufficient to apply property 3. from the definition with α = 1 amd
β = −1.

c) f(0̄) = 0̄.

Applying the previous property:

f(0̄) = f(0̄− 0̄) = f(0̄)− f(0̄) = 0̄.

d) Main property:

A linear map is completely determined
by the images of the elements of any basis

Proof: If B = {ū1, . . . , ūm} is a basis of U , then any other vector x̄ ∈ U is
uniquely expressed as a combination linear of the elements of B. Applying the
properties of the linear map definition we have:

f(x̄) = f(x1ū1 + . . .+ xmūm) = x1f(ū1) + . . .+ xmf(ūm).

We will sometimes use the abbreviated notation

f(x̄) = f(xiūi) = xif(ūi).

e) Let A = {ā1, . . . , āp} be a set of vectors and let f(A) = {f(ā1), . . . , f(āp)} the
image set of A by f .

e.1) If f(A) is a set of independent vectors then the vectors of A are indepen-
dent.

Proof: Consider a linear combination of the vectors in A which is equal
to 0̄:

α1ā1 + . . .+ αpāp = 0̄.

We apply f to both members of the equality:

f(α1ā1 + . . .+ αpāp) = f(0̄) ⇒ α1f(ā1) + . . .+ αpf(āp) = 0̄

Since f(A) is an independent set, α1 = . . . = αp = 0 and we deduce that
A is an independent set.

e.2) If the vectors of A are dependent, then f(A) is a dependent set.

Proof: If the vectors of A are dependent then one of them is a linear
combination of the others. Suppose it is ā1:

ā1 = α2ā2 + . . .+ αpāp.

We apply f to both members of the equality:

f(ā1) = f(α2ā2 + . . .+ αpāp) ⇒ f(ā1) = α2f(ā2) + . . .+ αpf(āp).

We see that one of the vectors in f(A) is a linear combination of the others.
Therefore f(A) is a dependent set.

Remark: None of the converses of these two results is true. It can happen that
A is independent and f(A) is dependent. For example if we take the linear map

f : IR2 −→ IR; f(x, y) = x+ y.

and A = {(1, 0), (1, 1)}, then f(A) = {1, 2} and we see that A is independent
but f(A) is dependent.

f) If f : U −→ V is a linear map and S a vector subspace of U , then the restriction
of f to S is the map:

fs : S −→ V, fs(x̄) = f(x̄).
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2 Matrix representation of linear maps.

Let U and V be two vector spaces over IK. Suppose B1 and B2 are bases of U and
V respectively:

B1 = {ū1, . . . , ūm}; B2 = {v̄1, . . . , v̄n}.

The image of each one of the vectors in B1 is in V , so it can be uniquely expressed
as a linear combination of the vectors in B2:

f(ū1) = a11 v̄1 + a21 v̄2 + . . .+ an1 v̄n
f(ū2) = a12 v̄1 + a22 v̄2 + . . .+ an2 v̄n

...
f(ūm) = a1m v̄1 + a2m v̄2 + . . .+ anm v̄n

This corresponds to the following matrix expression:

{ f(ū1) f(ū2) . . . f(ūm) } = { v̄1 v̄2 . . . v̄n }


a11 a12 . . . a1m
a21 a22 . . . a2m

...
...

. . .
...

an1 an2 . . . anm


︸ ︷︷ ︸

FB2B1

,

or, equivalently,

(f(ūj)) = (v̄i)FB2B1 .

The matrix FB2B1 is called the matrix associated to the linear map f with
respect to the bases B1 and B2.

This matrix allows us to compute the image of any vector by means of a matrix
product. We denote:

(x1, . . . , xm) → coordinates of a vector x̄ ∈ U with respect to the basis B1.
(y1, . . . , yn) → coordinates of the image vector f(x̄) ∈ V with respect to the basis B2.

Then: 
y1

y2

...
yn

 =


a11 a12 . . . a1m
a21 a22 . . . a2m

...
...

. . .
...

an1 an2 . . . anm



x1

x2

...
xm

 ⇐⇒ (yi) = FB2B1(xj)

Proof: We have:

f(x̄) = f((xj)(ūj)) = f(ūj)(x
j) = (v̄i)FB2B1(xj)

f(x̄) = (v̄i)(y
i)

}
⇒ (yi) = FB2B1(xj).

3 Change of basis.

We consider a linear map f : U −→ V between two vector spaces with finite dimen-
sion. Suppose we have the following bases:

B1 = {ū1, . . . , ūm}
B′1 = {ū′1, . . . , ū′m}

bases of U ;
B2 = {v̄1, . . . , v̄n}
B′2 = {v̄′1, . . . , v̄′n}

bases of V .

We will denote the coordinates of a vector x̄ and its image ȳ in each of the bases as
follows:

Coordinates of x̄. Coordinates of ȳ = f(x̄).

(x1, . . . , xm) w.r.t. the basis B1

(x′1, . . . , x′m) w.r.t. the basis B′1

(y1, . . . , yn) w.r.t. the basis B2

(y′1, . . . , y′n) w.r.t. the basis B′2

These different bases and coordinates are related by the following formulas:

(ū′) = (ū)MB1B
′
1

(v̄′) = (v̄)MB2B
′
2

(x) = MB1B
′
1
(x′) (y) = MB2B

′
2
(y′)

We also know that we can write the matrix expression of the map f with respect to
the bases B1, B2 or B′1, B

′
2:

(y) = FB2B1(x) (y′) = FB′
2
B′

1
(x′)

Let us see how the matrices associated to f with respect to the bases B1, B2 and
B′1, B

′
2 are related:

(y) = FB2B1(x) ⇒ MB2B
′
2
(y′) = FB2B1MB1B

′
1
(x′) ⇒

⇒ (y′) = (MB2B
′
2
)−1FB2B1(MB1B

′
1
)(x′)

and therefore:

FB′
2
B′

1
= (MB2B

′
2
)−1FB2B1MB1B

′
1
, or FB′

2
B′

1
= MB′

2
B2
FB2B1MB1B

′
1

Some remarks about the change of basis:

1. Two matrices associated to the same linear map with respect to different bases
are equivalent.

2. As a mnemonic, we note that the indices corresponding to the same base are
adjacent in the formulas:

FB′
2
B′

1
= M

B′
2
B2

F
B2 B1

M
B1 B′

1

Also, with this notation, the role of each matrix is explicitly indicated. That is,
we want to express the matrix FB′

2
B′

1
which, when multiplied by coordinates in

the base B′1, returns the image in the base B′2, in terms of the matrix FB2B1 ,
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which, when multiplied by coordinates in the base B1, returns the image in base
B2. Sos:

- through MB1B
′
1

we turn the coordinates in the base B′1 into coordinates in the
base B1.

- through FB2B1 we obtain the coordinates of the image in the base B2 from
the coordinates in the base B1 obtained in the previous step.

- through MB′
2
B2

we turn the coordinates of the image in the base B2 into

coordinates in the base B′2.

4 Kernel and image of a linear map.

Definition 4.1 Given a linear map f : U −→ V , the set of vectors whose image by
f is 0̄ is called the kernel of f :

ker(f) = {x̄ ∈ U | f(x̄) = 0̄}.

Proposition 4.2 The kernel of a linear map is a vector subspace of the initial space.

Proof: Let us check that it satisfies the definition of a vector subspace:

- First of all, it is nonempty since f(0̄) = 0̄, so at least 0̄ ∈ ker(f).

- Fix x̄, x̄′ ∈ ker(f) and α, β ∈ IK and let us see that αx̄+ βx̄′ ∈ ker(f):

f(αx̄+ βx̄′) = αf(x̄) + βf(x̄′) = α0̄ + β0̄ = 0̄.
↑

x̄, x̄′ ∈ ker(f)

and hence αx̄+ βx̄′ ∈ ker(f).

If we know the matrix associated to the linear map f with respect to two bases
B1 and B2, of U and V respectively, then the vectors of the kernel are those whose
coordinates with respect to the base B1 satisfy the equation

FB2B1


x1

x2

...
xm

 =


0
0
...
0

 .

Definition 4.3 Given a linear map f : U −→ V we call the image of f the set of
images by f of all vectors in U :

im(f) = {ȳ ∈ V | ȳ = f(x̄), x̄ ∈ U}.

Proposition 4.4 The image of a linear map is a vector subspace of the final space.

Proof: Let us check that it satisfies the definition of a vector subspace:

- First of all, it is not empty since f(0̄) = 0̄, thus at least 0̄ ∈ im(f).

- Fix ȳ, ȳ′ ∈ im(f) and α, β ∈ IK and let us see that αȳ + βȳ′ ∈ im(f):

ȳ ∈ im(f) ⇒ ȳ = f(x̄), x̄ ∈ U
ȳ′ ∈ im(f) ⇒ ȳ′ = f(x̄′), x̄′ ∈ U

}
⇒ αȳ + βȳ′ = f(αx̄+ βx̄′)

where αx̄+ βx̄′ ∈ U . We deduce that αȳ + βȳ′ ∈ im(f).

Proposition 4.5 If A = {ā1, . . . , āk} is a spanning set of U , then f(A) =
{f(ā1), . . . , f(āk)} is a spanning set of im(f).

Proof: First of all it is clear that L(f(A)) ⊂ imf , since any linearcombination of
elements in f(A) is the image of the corresponding linear combination of the elements
in A.

Conversely, let ȳ be in im(f). So there exists x̄ ∈ U with f(x̄) = ȳ. Since A is a
spanning set of U ,

x̄ = α1ā1 + . . . αkāk.

Applying f we obtain:

f(x̄) = f(α1ā1 + . . . αkāk) ⇒ ȳ = f(x̄) = α1f(ā1) + . . . αkf(āk).

so ȳ can be written as a linear combination of the elements of f(A).

Let B1 and B2 be bases of U1 and U2 respectively. As a consequence of this
Proposition, the image of f is generated by the images of the vectors in B1. In
particular, if FB2B1 is the matrix associated to f , the image vectors expressed
in coordinates with respect to the base B2 are generated by the columns
of the matrix FB2B1 .

We note that these columns do not have to be independent, since as we
saw before, although B1 is an independent set, f(B1) does not have to be. Therefore
if we want a basis of the image, we need to remove the columns of FB2B1 that are
dependent on the others.

Theorem 4.6 If f : U −→ V is a linear map between two finite vector spaces then:

dim(ker(f)) + dim(im(f)) = dim(U)

Proof: Suppose that dim(ker(f)) = k and dim(U) = m. Let

Bk = {ū1, . . . , ūk}

be a basis of the kernel of f . We can complete this base up to a basis of U :

B1 = {ū1, . . . , ūk, ūk+1, . . . , ūm}
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We know that im(f) is spanned by f(B1):

Im(f) = L{f(ū1), . . . , f(ūk), f(ūk+1), . . . , f(ūm)} = L{f(ūk+1), . . . , f(ūm)}

since by definition of the kernel f(ū1) = . . . = f(ūk) = 0̄.

So {f(ūk+1), . . . , f(ūm)} is a spanning set of im(f). Let us see that is an inde-
pendent set. Suppose that

αk+1f(ūk+1) + . . .+ αmf(ūm) = 0̄.

Then

f(αk+1ūk+1 + . . .+ αmūm) = 0̄ ⇒ αk+1ūk+1 + . . .+ αmūm ∈ ker(f).

We next use that B is a basis of ker(f):

αk+1ūk+1 + . . .+ αmūm = α1ū1 + . . .+ αkūk

and bringing all terms to the first member of the equation

α1ū1 + . . .+ αkūk − αk+1ūk+1 − . . .− αmūm = 0̄

Since the vectors in B′ are a basis, in particular they are independent. We deduce
that αk+1 = . . . = αm = 0 and we have proved the required linear independence.

In summary, we have proved that {f(ūk+1), . . . , f(ūm)} is an independent, span-
ning set of im(f), that is, a basis. So

dim(im(f)) = m− (k + 1) + 1 = m− k = dim(U)− dim(ker(f)).

5 The matrix associated to a projection map-
ping.

We have seen that given two complementary vector subspaces S1, S2, every vector
x̄ ∈ V can be uniquely expressed as x̄ = x̄1 + x̄2, with x̄1 inS1 and x̄2 ∈ S2.

This allows us to define the projection map onto S1 along S2:

p1 : V −→ V, p1(x̄) = x̄1 if x̄ = x̄1 + x̄2 with x̄1 ∈ S1 and x̄2 ∈ S2

The steps to find the associated matrix of a projection mapping with respect to a
basis C (which normally will be the canonical basis) are:

1. Find bases {u1, u2, . . . , uk} and {v1, v2 . . . , vl} respectively of the subspaces S1

and S2, expressing their vectors in coordinates with respect to the basis C.

2. Form a base of the space V by joining the previous bases (the fact that the
subspaces are complementary guarantees that the union of the basis is a base
of the total space):

B = {u1, u2, . . . , uk︸ ︷︷ ︸
S1

, v1, v2 . . . , vl︸ ︷︷ ︸
S2

}.

3. With respect to the basis B above, the associated matrix is a diagonal matrix,
with as many ones on the diagonal as the dimension k of S1 and as many zeros
as the dimension l of S2 .

PB =



1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0︸ ︷︷ ︸

dim(S1)=k

0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0︸ ︷︷ ︸

dim(S2)=l


.

The matrix PB has this form because the vectors of S1, when projected onto
S1, remain invariant. On the contrary, the vectors S2, when projected along to
that same subspace, go to the zero vector.

4. Finally we make a change of basis to express the associated matrix in the starting
base C:

PC = MCBPBMBC = MCBPMM
−1
CB .

6 Composition of linear maps.

Proposition 6.1 Let f : U −→ V and g : V −→ W be two linear maps. Then the
composition map g ◦ f is also a linear map.

Proof: Let x̄, x̄′ ∈ U and α, β ∈ IK. We have:

(g ◦ f)(αx̄+ βx̄′) = g(f(αx̄+ βx̄′)) = (linearity of f)
= g(αf(x̄) + βf(x̄′)) = (linearity of g)
= αg(f(x̄)) + βg(f(x̄′)) = α(g ◦ f)(x̄) + β(g ◦ f)(x̄′).

If we have bases in each of the vector spaces U, V and W :

B1 = {ū1, . . . , ūm}, B2 = {v̄1, . . . , v̄n}, B3 = {w̄1, . . . , w̄p}.
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and we call h = g ◦ f the composition map, we can see how the matrices FB2B1 ,
GB3B2 andHB3B1 are related. If we denote the coordinates of the vectors x̄, ȳ = f(x̄),
z̄ = h(x̄) = g(ȳ), by (x), (y), (z) with respect to the bases B1, B2 and B3 respectively,
we know that

(y) = FB2B1(x); (z) = GB3B2(y); (z) = HB3B1(x)

Therefore:

(z) = GB3B2(y) = GB3B2FB2B1(x)

and we deduce that:

If h = g ◦ f, HB3B1 = GB3B2FB2B1 .

7 Classification of linear maps.

7.1 Monomorphisms.

Definition 7.1 A monomoprhism is an injective linear map.

We next collect some properties of monomorphisms.

1. A linear map f : U −→ V es injective ⇐⇒ ker(f) = {0̄}.
Proof:

=⇒: Suppose that f : U −→W is an injective linear map. Then:

x̄ ∈ ker(f) ⇒ f(x̄) = 0̄ ⇒ f(x̄) = f(0̄) ⇒ x̄ = 0̄.
↑

f injective

and thus ker(f) = {0̄}.
⇐=: Suppose that ker(f) = {0̄}. Then:

f(x̄) = f(x̄′) ⇒ f(x̄)− f(x̄′) = 0̄ ⇒ f(x̄− x̄′) = 0̄ ⇒
⇒ x̄− x̄′ ∈ ker(f) ⇒ x̄− x̄′ = 0̄ ⇒ x̄ = x̄′

and therefore f is injective.

2. If f : U −→ V is a monomorphism between vector spaces of finite dimension
then dim(U) ≤ dim(V ).

Proof: It is sufficient to note that im(f) ⊂ V and also that (because f is
injective) ker(f) = {0̄}. Then:

dim(U) = dim(im(f)) + dim(ker(f)) = dim(im(f)) ≤ dim(V ).

7.2 Epimorphisms.

Definition 7.2 An epimorphism is a surjective linear map.

The following are some properties of epimorphisms:

1. If f : U −→ V is an epimorphism between vector spaces of finite dimension then
dim(U) ≥ dim(V ).

Proof: It is sufficient to note that im(f) = V , because f is surjective. Then:

dim(U) = dim(im(f)) + dim(ker(f)) ≥ dim(im(f)) = dim(V ).

7.3 Isomorphisms.

Definition 7.3 An isomorphism is a bijective linear map.

The following are some properties of isomorphisms:

1. If f is a linear map, [f is bijective ⇐⇒ ker(f) = 0̄ and im(f) = U ].

Proof: It is sufficient to note that:

- f bijective ⇐⇒ f injective and surjective ⇐⇒ ker(f) = 0̄ and im(f) = U .

2. If f : U −→ V is an isomorphism, then its inverse map f−1 : V −→ U is an
isomorphism.

Proof: Since f is bijective, we know that its inverse map f−1 exists and is also
bijective. It remains to prove that f−1 is linear.

Let ȳ, ȳ′ ∈ V and α, β ∈ IK. Suppose that f−1(ȳ) = x̄ and f−1(ȳ′) = x̄′. Then:

f−1(ȳ) = x̄ ⇒ f(x̄) = ȳ
f−1(ȳ′) = x̄′ ⇒ f(x̄′) = ȳ′

⇒ f(αx̄+βx̄′) = αf(x̄)+βf(x̄′) = αȳ+βȳ′.

Therefore:

f−1(αȳ + βȳ′) = αx̄+ βx̄′ = αf−1(ȳ) + βf−1(ȳ′).

3. The composition of two isomorphisms is an isomorphism.

It is sufficient to note that the composition of linear maps is a linear map and
that the composition of bijective maps is a bijective map.

4. Any two spaces with the same dimension are isomorphic.

Proof: We can prove it in two ways:

- We have seen that any vector space of dimension n is isomorphic to IKn. Thus
two spaces of the same dimension are isomorphic to each other.

- Directly, if U and V are two n-dimensional vector spaces and we have bases

B1 = {ū1, . . . , un}; B2 = {v̄1, . . . , v̄n}
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respectively of U and V , we can define the linear map f : U −→ V as the one
which acts on the base B1 as follows:

f(ū1) = v̄1; . . . f(ūn) = v̄n;

The matrix associated to f with respect to the bases B1 and B2 is FB2B1 = Id.
Therefore this map is invertible. Its associated matrix is F ′B1B2

= (FB2B1)−1 =
Id. Any map which has an inverse is bijective.

5. If there is an isomorphism f : U −→ V between U and V then dim(U) =
dim(V ).

Proof: Since f is injective we know that dim(U) ≤ dim(V ). Becuase f is
surjective, dim(U) ≥ dim(V ). Combining both facts we obtain the equality of
the dimensions.

7.4 Endomorphisms.

Definition 7.4 An endomorphism is a linear map from a vector space to itself:

f : U −→ U.

Definition 7.5 An automorphism is a bijective endomorphism.

In the next chapter we will study endomorphisms of finite vector spaces in detail.

8 Vector space of homomorphisms.

Given two vector spaces U, V we denote by Hom(U, V ) the set of all linear maps
from U to V . On this set one can define two operations: the sum of maps (internal)
and the product by a scalar (external):

- The sum of two linear maps is defined as

(f + g)(x̄) = f(x̄) + g(x̄), ∀f, g ∈ Hom(U, V ), ∀x̄ ∈ U.

- The product of a linear mapping by a scalar is defined as

(λf)(x̄) = λf(x̄), ∀f ∈ Hom(U, V ), λ ∈ IK, ∀x̄ ∈ U.

It is easy to see that with these operations Hom(U, V ) has a vector space structure
over IK.

Proposition 8.1 If U, V are vector spaces of dimension m and n respectively,
Hom(U, V ) is a vector space of dimension n ·m.

Proof: Choose two bases B1 and B2 of U and V respectively.

B1 = {ū1, . . . , ūm}; B2 = {v̄1, . . . , v̄2}.

We define the following map between the vector spaces Hom(U, V ) andMn×m(IK):

π : Hom(V,U) −→ Mn×m(IK)
f −→ FB2B1

which associates to each linear map in Hom(U, V ) its associated matrix with respect
to the previously fixed bases.

The map π satifies:

- It is linear. Indeed,

π(αf + βg) = αFB2B1 + βGB2B1 = απ(f) + βπ(g)

for any α, β ∈ IK and f, g ∈ Hom(U, V ).

- It is injective. Indeed,

f ∈ ker(π) ⇒ FB2B1 = Ω ⇒ f = 0.

- It is surjective. Indeed, given any matrix F ∈ Mn×m(IK) we can always define
a linear map of U on V whose associated matrix with respect to B1 and B2 is F .
Just take

f(xj) = (v̄i)F (xj),

where (xj) are the coordinates of any vector of U with respect to the basis B1.

Thus π is an isomorphism and

dim(Hom(V,U)) = dim(Mn×m(IK) = n ·m.

8.1 Dual space.

As a particular case of a vector space of homomorphisms, we define

Definition 8.2 Given a vector space U over the field IK, the dual space of U ,
denoted by U∗, is the vector space Hom(U, IK).

The elements of U∗ are linear maps:

f : U −→ IK

and are often called linear forms or covectors.

It is clear from the previous discussion that dim(U∗) = dim(U).
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