3. Linear maps.

1 Definition and properties.

Definition 1.1 Let U and V be two vector spaces over the field \mathbb{K}. We say that $f: U \longrightarrow V$ is a linear map or homomorphism if it satisfies:

1. $f\left(\bar{x}+\bar{x}^{\prime}\right)=f(\bar{x})+f\left(\bar{x}^{\prime}\right)$, for any $\bar{x}, \bar{x}^{\prime} \in U$.
2. $f(\alpha \bar{x})=\alpha f(\bar{x})$, for any $\alpha \in \mathbb{K}, \bar{x} \in U$.
or equivalently:
3. $f\left(\alpha \bar{x}+\beta \bar{x}^{\prime}\right)=\alpha f(\bar{x})+\beta f\left(\bar{x}^{\prime}\right)$, for any $\alpha \in \mathbb{K}, \bar{x}, \bar{x}^{\prime} \in U$.

Remark 1.2 Let us see the equivalence between conditions 1., 2. and condition 3.:
1., 2. $\Longrightarrow \quad 3$.:

Given $\alpha \in \mathbb{K}, \bar{x}, \bar{x}^{\prime} \in U$ we have:

$$
\begin{array}{rcc}
f\left(\alpha \bar{x}+\beta \bar{x}^{\prime}\right) & \underset{ }{\uparrow} \\
& & f(\alpha \bar{x})+f\left(\beta \bar{x}^{\prime}\right) \tag{2.}\\
(1 .) & \uparrow \\
& (2 .)
\end{array}
$$

3. \Longrightarrow 1., 2.:

If we apply property 3. for $\alpha=\beta=1$ and any $\bar{x}, \bar{x}^{\prime} \in U$, we obtain property 1 .
If we apply property 3 . for $\beta=0, \bar{x}^{\prime}=\overline{0}$ and any $\alpha \in \mathbb{K}, \bar{x} \in U$, we obtain property 2..

We next collect some properties of linear maps:
a) $f(-\bar{x})=-f(\bar{x})$.

Proof: We apply property 2 . from the definition:

$$
f(-\bar{x})=f((-1) \bar{x})=(-1) f(\bar{x})=-f(\bar{x})
$$

b) $f\left(\bar{x}-\bar{x}^{\prime}\right)=f(\bar{x})-f\left(\bar{x}^{\prime}\right)$.

Proof: It is sufficient to apply property 3 . from the definition with $\alpha=1$ amd $\beta=-1$.
c) $f(\overline{0})=\overline{0}$.

Applying the previous property:

$$
f(\overline{0})=f(\overline{0}-\overline{0})=f(\overline{0})-f(\overline{0})=\overline{0} .
$$

d) Main property:

A linear map is completely determined by the images of the elements of any basis

Proof: If $B=\left\{\bar{u}_{1}, \ldots, \bar{u}_{m}\right\}$ is a basis of U, then any other vector $\bar{x} \in U$ is uniquely expressed as a combination linear of the elements of B. Applying the properties of the linear map definition we have:

$$
f(\bar{x})=f\left(x^{1} \bar{u}_{1}+\ldots+x^{m} \bar{u}_{m}\right)=x^{1} f\left(\bar{u}_{1}\right)+\ldots+x^{m} f\left(\bar{u}_{m}\right) .
$$

We will sometimes use the abbreviated notation

$$
f(\bar{x})=f\left(x^{i} \bar{u}_{i}\right)=x^{i} f\left(\bar{u}_{i}\right) .
$$

e) Let $A=\left\{\bar{a}_{1}, \ldots, \bar{a}_{p}\right\}$ be a set of vectors and let $f(A)=\left\{f\left(\bar{a}_{1}\right), \ldots, f\left(\bar{a}_{p}\right)\right\}$ the image set of A by f.
e.1) If $f(A)$ is a set of independent vectors then the vectors of A are independent.
Proof: Consider a linear combination of the vectors in A which is equal to $\overline{0}$:

$$
\alpha^{1} \bar{a}_{1}+\ldots+\alpha^{p} \bar{a}_{p}=\overline{0} .
$$

We apply f to both members of the equality:

$$
f\left(\alpha^{1} \bar{a}_{1}+\ldots+\alpha^{p} \bar{a}_{p}\right)=f(\overline{0}) \Rightarrow \alpha^{1} f\left(\bar{a}_{1}\right)+\ldots+\alpha^{p} f\left(\bar{a}_{p}\right)=\overline{0}
$$

Since $f(A)$ is an independent set, $\alpha^{1}=\ldots=\alpha^{p}=0$ and we deduce that A is an independent set.
e.2) If the vectors of A are dependent, then $f(A)$ is a dependent set.

Proof: If the vectors of A are dependent then one of them is a linear combination of the others. Suppose it is \bar{a}_{1} :

$$
\bar{a}_{1}=\alpha^{2} \bar{a}_{2}+\ldots+\alpha^{p} \bar{a}_{p}
$$

We apply f to both members of the equality:

$$
f\left(\bar{a}_{1}\right)=f\left(\alpha^{2} \bar{a}_{2}+\ldots+\alpha^{p} \bar{a}_{p}\right) \Rightarrow f\left(\bar{a}_{1}\right)=\alpha^{2} f\left(\bar{a}_{2}\right)+\ldots+\alpha^{p} f\left(\bar{a}_{p}\right)
$$

We see that one of the vectors in $f(A)$ is a linear combination of the others. Therefore $f(A)$ is a dependent set.

Remark: None of the converses of these two results is true. It can happen that A is independent and $f(A)$ is dependent. For example if we take the linear map

$$
f: \mathbb{R}^{2} \longrightarrow \mathbb{R} ; \quad f(x, y)=x+y
$$

and $A=\{(1,0),(1,1)\}$, then $f(A)=\{1,2\}$ and we see that A is independent but $f(A)$ is dependent.
f) If $f: U \longrightarrow V$ is a linear map and S a vector subspace of U, then the restriction of f to S is the map:

$$
f_{s}: S \longrightarrow V, \quad f_{s}(\bar{x})=f(\bar{x})
$$

2 Matrix representation of linear maps.

Let U and V be two vector spaces over \mathbb{K}. Suppose B_{1} and B_{2} are bases of U and V respectively:

$$
B_{1}=\left\{\bar{u}_{1}, \ldots, \bar{u}_{m}\right\} ; \quad B_{2}=\left\{\bar{v}_{1}, \ldots, \bar{v}_{n}\right\} .
$$

The image of each one of the vectors in B_{1} is in V, so it can be uniquely expressed as a linear combination of the vectors in B_{2} :

$$
\begin{gathered}
f\left(\bar{u}_{1}\right)=a_{11} \bar{v}_{1}+a_{21} \bar{v}_{2}+\ldots+a_{n 1} \bar{v}_{n} \\
f\left(\bar{u}_{2}\right)=a_{12} \bar{v}_{1}+a_{22} \bar{v}_{2}+\ldots+a_{n 2} \bar{v}_{n} \\
\vdots \\
f\left(\bar{u}_{m}\right)=a_{1 m} \bar{v}_{1}+a_{2 m} \bar{v}_{2}+\ldots+a_{n m} \bar{v}_{n}
\end{gathered}
$$

This corresponds to the following matrix expression:

$$
\left\{\begin{array}{llll}
f\left(\bar{u}_{1}\right) & f\left(\bar{u}_{2}\right) & \ldots & f\left(\bar{u}_{m}\right)
\end{array}\right\}=\left\{\begin{array}{llll}
\bar{v}_{1} & \bar{v}_{2} & \ldots & \bar{v}_{n}
\end{array}\right\}\left(\begin{array}{cccc}
\left.\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 m} \\
a_{21} & a_{22} & \ldots & a_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n m}
\end{array}\right) & F_{F_{B_{2} B_{1}}}^{\left(\begin{array}{ll}
\\
a_{n}
\end{array}\right.},
\end{array}\right.
$$

or, equivalently,

$$
\left(f\left(\bar{u}_{j}\right)\right)=\left(\bar{v}_{i}\right) F_{B_{2} B_{1}}
$$

The matrix $F_{B_{2} B_{1}}$ is called the matrix associated to the linear map f with respect to the bases B_{1} and B_{2}.

This matrix allows us to compute the image of any vector by means of a matrix product. We denote:

$$
\begin{aligned}
\left(x^{1}, \ldots, x^{m}\right) & \rightarrow \text { coordinates of a vector } \bar{x} \in U \text { with respect to the basis } B_{1} . \\
\left(y^{1}, \ldots, y^{n}\right) & \rightarrow \text { coordinates of the image vector } f(\bar{x}) \in V \text { with respect to the basis } B_{2} .
\end{aligned}
$$

Then:

$$
\left(\begin{array}{c}
y^{1} \\
y^{2} \\
\vdots \\
y^{n}
\end{array}\right)=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 m} \\
a_{21} & a_{22} & \ldots & a_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n m}
\end{array}\right)\left(\begin{array}{c}
x^{1} \\
x^{2} \\
\vdots \\
x^{m}
\end{array}\right) \Longleftrightarrow\left(y^{i}\right)=F_{B_{2} B_{1}}\left(x^{j}\right)
$$

Proof: We have:

$$
\left.\begin{array}{l}
f(\bar{x})=f\left(\left(x^{j}\right)\left(\bar{u}_{j}\right)\right)=f\left(\bar{u}_{j}\right)\left(x^{j}\right)=\left(\bar{v}_{i}\right) F_{B_{2} B_{1}}\left(x^{j}\right) \\
f(\bar{x})=\left(\bar{v}_{i}\right)\left(y^{i}\right)
\end{array}\right\} \quad \Rightarrow \quad\left(y^{i}\right)=F_{B_{2} B_{1}}\left(x^{j}\right)
$$

3 Change of basis.

We consider a linear map $f: U \longrightarrow V$ between two vector spaces with finite dimension. Suppose we have the following bases:

$$
\begin{array}{ll}
B_{1}=\left\{\bar{u}_{1}, \ldots, \bar{u}_{m}\right\} \\
B_{1}^{\prime}=\left\{\bar{u}_{1}^{\prime}, \ldots, \bar{u}_{m}^{\prime}\right\}
\end{array} \text { bases of } U ; \quad \begin{aligned}
& B_{2}=\left\{\bar{v}_{1}, \ldots, \bar{v}_{n}\right\} \\
& B_{2}^{\prime}=\left\{\bar{v}_{1}^{\prime}, \ldots, \bar{v}_{n}^{\prime}\right\}
\end{aligned} \text { bases of } V .
$$

We will denote the coordinates of a vector \bar{x} and its image \bar{y} in each of the bases as follows:

Coordinates of \bar{x}		Coordinates of $\bar{y}=f(\bar{x})$.
$\left(x^{1}, \ldots, x^{m}\right)$	w.r.t. the basis B_{1}	$\left(y^{1}, \ldots, y^{n}\right)$
w.r.t. the basis B_{2}		
$\left(x^{\prime 1}, \ldots, x^{\prime m}\right)$	w.r.t. the basis B_{1}^{\prime}	$\left(y^{\prime 1}, \ldots, y^{\prime n}\right)$

These different bases and coordinates are related by the following formulas:

$$
\begin{array}{l|l}
\left(\bar{u}^{\prime}\right)=(\bar{u}) M_{B_{1} B_{1}^{\prime}} & \left(\bar{v}^{\prime}\right)=(\bar{v}) M_{B_{2} B_{2}^{\prime}} \\
(x)=M_{B_{1} B_{1}^{\prime}}\left(x^{\prime}\right) & (y)=M_{B_{2} B_{2}^{\prime}}\left(y^{\prime}\right)
\end{array}
$$

We also know that we can write the matrix expression of the map f with respect to the bases B_{1}, B_{2} or $B_{1}^{\prime}, B_{2}^{\prime}$:

$$
(y)=F_{B_{2} B_{1}}(x) \mid\left(y^{\prime}\right)=F_{B_{2}^{\prime} B_{1}^{\prime}}\left(x^{\prime}\right)
$$

Let us see how the matrices associated to f with respect to the bases B_{1}, B_{2} and $B_{1}^{\prime}, B_{2}^{\prime}$ are related:

$$
\begin{aligned}
(y)=F_{B_{2} B_{1}}(x) & \Rightarrow M_{B_{2} B_{2}^{\prime}}\left(y^{\prime}\right)=F_{B_{2} B_{1}} M_{B_{1} B_{1}^{\prime}}\left(x^{\prime}\right) \Rightarrow \\
& \Rightarrow\left(y^{\prime}\right)=\left(M_{B_{2} B_{2}^{\prime}}\right)^{-1} F_{B_{2} B_{1}}\left(M_{B_{1} B_{1}^{\prime}}\right)\left(x^{\prime}\right)
\end{aligned}
$$

and therefore:

$$
F_{B_{2}^{\prime} B_{1}^{\prime}}=\left(M_{B_{2} B_{2}^{\prime}}\right)^{-1} F_{B_{2} B_{1}} M_{B_{1} B_{1}^{\prime}}, \quad \text { or } \quad F_{B_{2}^{\prime} B_{1}^{\prime}}=M_{B_{2}^{\prime} B_{2}} F_{B_{2} B_{1}} M_{B_{1} B_{1}^{\prime}}
$$

Some remarks about the change of basis:

1. Two matrices associated to the same linear map with respect to different bases are equivalent.
2. As a mnemonic, we note that the indices corresponding to the same base are adjacent in the formulas:

$$
F_{B_{2}^{\prime} B_{1}^{\prime}}=M_{B_{2}^{\prime}} B_{2}{ }^{F} B_{2} B_{1} B^{M} B_{1} B_{1}^{\prime}
$$

Also, with this notation, the role of each matrix is explicitly indicated. That is, we want to express the matrix $F_{B_{2}^{\prime} B_{1}^{\prime}}$ which, when multiplied by coordinates in the base B_{1}^{\prime}, returns the image in the base B_{2}^{\prime}, in terms of the matrix $F_{B_{2} B_{1}}$,
which, when multiplied by coordinates in the base B_{1}, returns the image in base B_{2}. Sos:

- through $M_{B_{1} B_{1}^{\prime}}$ we turn the coordinates in the base B_{1}^{\prime} into coordinates in the base B_{1}.
- through $F_{B_{2} B_{1}}$ we obtain the coordinates of the image in the base B_{2} from the coordinates in the base B_{1} obtained in the previous step.
- through $M_{B_{2}^{\prime} B_{2}}$ we turn the coordinates of the image in the base B_{2} into coordinates in the base B_{2}^{\prime}.

4 Kernel and image of a linear map.

Definition 4.1 Given a linear map $f: U \longrightarrow V$, the set of vectors whose image by f is $\overline{0}$ is called the kernel of f :

$$
\operatorname{ker}(f)=\{\bar{x} \in U \mid f(\bar{x})=\overline{0}\}
$$

Proposition 4.2 The kernel of a linear map is a vector subspace of the initial space.
Proof: Let us check that it satisfies the definition of a vector subspace:

- First of all, it is nonempty since $f(\overline{0})=\overline{0}$, so at least $\overline{0} \in \operatorname{ker}(f)$.
- Fix $\bar{x}, \bar{x}^{\prime} \in \operatorname{ker}(f)$ and $\alpha, \beta \in \mathbb{K}$ and let us see that $\alpha \bar{x}+\beta \bar{x}^{\prime} \in \operatorname{ker}(f)$:

$$
\begin{gathered}
f\left(\alpha \bar{x}+\beta \bar{x}^{\prime}\right)=\alpha f(\bar{x})+\beta f\left(\bar{x}^{\prime}\right) \underset{\uparrow}{=} \alpha \overline{0}+\beta \overline{0}=\overline{0} . \\
\bar{x}, \bar{x}^{\prime} \in \operatorname{ker}(f)
\end{gathered}
$$

and hence $\alpha \bar{x}+\beta \bar{x}^{\prime} \in \operatorname{ker}(f)$.
If we know the matrix associated to the linear map f with respect to two bases B_{1} and B_{2}, of U and V respectively, then the vectors of the kernel are those whose coordinates with respect to the base B_{1} satisfy the equation

$$
F_{B_{2} B_{1}}\left(\begin{array}{c}
x^{1} \\
x^{2} \\
\vdots \\
x^{m}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

Definition 4.3 Given a linear map $f: U \longrightarrow V$ we call the image of f the set of images by f of all vectors in U :

$$
i m(f)=\{\bar{y} \in V \mid \bar{y}=f(\bar{x}), \bar{x} \in U\} .
$$

Proposition 4.4 The image of a linear map is a vector subspace of the final space.

Proof: Let us check that it satisfies the definition of a vector subspace:

- First of all, it is not empty since $f(\overline{0})=\overline{0}$, thus at least $\overline{0} \in i m(f)$.
- Fix $\bar{y}, \bar{y}^{\prime} \in \operatorname{im}(f)$ and $\alpha, \beta \in \mathbb{K}$ and let us see that $\alpha \bar{y}+\beta \bar{y}^{\prime} \in \operatorname{im}(f)$:

$$
\left.\begin{array}{rl}
\bar{y} \in \operatorname{im}(f) & \Rightarrow \quad \bar{y}=f(\bar{x}), \quad \bar{x} \in U \\
\bar{y}^{\prime} \in \operatorname{im}(f) & \Rightarrow \quad \bar{y}^{\prime}=f\left(\bar{x}^{\prime}\right), \quad \bar{x}^{\prime} \in U
\end{array}\right\} \quad \Rightarrow \quad \alpha \bar{y}+\beta \bar{y}^{\prime}=f\left(\alpha \bar{x}+\beta \bar{x}^{\prime}\right)
$$

where $\alpha \bar{x}+\beta \bar{x}^{\prime} \in U$. We deduce that $\alpha \bar{y}+\beta \bar{y}^{\prime} \in \operatorname{im}(f)$.
Proposition 4.5 If $A=\left\{\bar{a}_{1}, \ldots, \bar{a}_{k}\right\}$ is a spanning set of U, then $f(A)=$ $\left\{f\left(\bar{a}_{1}\right), \ldots, f\left(\bar{a}_{k}\right)\right\}$ is a spanning set of $\operatorname{im}(f)$.

Proof: First of all it is clear that $\mathcal{L}(f(A)) \subset i m f$, since any linearcombination of elements in $f(A)$ is the image of the corresponding linear combination of the elements in A.

Conversely, let \bar{y} be in $\operatorname{im}(f)$. So there exists $\bar{x} \in U$ with $f(\bar{x})=\bar{y}$. Since A is a spanning set of U,

$$
\bar{x}=\alpha^{1} \bar{a}_{1}+\ldots \alpha^{k} \bar{a}_{k}
$$

Applying f we obtain:

$$
f(\bar{x})=f\left(\alpha^{1} \bar{a}_{1}+\ldots \alpha^{k} \bar{a}_{k}\right) \Rightarrow \bar{y}=f(\bar{x})=\alpha^{1} f\left(\bar{a}_{1}\right)+\ldots \alpha^{k} f\left(\bar{a}_{k}\right)
$$

so \bar{y} can be written as a linear combination of the elements of $f(A)$.
Let B_{1} and B_{2} be bases of U_{1} and U_{2} respectively. As a consequence of this Proposition, the image of f is generated by the images of the vectors in B_{1}. In particular, if $F_{B_{2} B_{1}}$ is the matrix associated to f, the image vectors expressed in coordinates with respect to the base B_{2} are generated by the columns of the matrix $F_{B_{2} B_{1}}$.

We note that these columns do not have to be independent, since as we saw before, although B_{1} is an independent set, $f\left(B_{1}\right)$ does not have to be. Therefore if we want a basis of the image, we need to remove the columns of $F_{B_{2} B_{1}}$ that are dependent on the others.

Theorem 4.6 If $f: U \longrightarrow V$ is a linear map between two finite vector spaces then:

$$
\operatorname{dim}(\operatorname{ker}(f))+\operatorname{dim}(\operatorname{im}(f))=\operatorname{dim}(U)
$$

Proof: Suppose that $\operatorname{dim}(\operatorname{ker}(f))=k$ and $\operatorname{dim}(U)=m$. Let

$$
B_{k}=\left\{\bar{u}_{1}, \ldots, \bar{u}_{k}\right\}
$$

be a basis of the kernel of f. We can complete this base up to a basis of U :

$$
B_{1}=\left\{\bar{u}_{1}, \ldots, \bar{u}_{k}, \bar{u}_{k+1}, \ldots, \bar{u}_{m}\right\}
$$

We know that $\operatorname{im}(f)$ is spanned by $f\left(B_{1}\right)$:

$$
\operatorname{Im}(f)=\mathcal{L}\left\{f\left(\bar{u}_{1}\right), \ldots, f\left(\bar{u}_{k}\right), f\left(\bar{u}_{k+1}\right), \ldots, f\left(\bar{u}_{m}\right)\right\}=\mathcal{L}\left\{f\left(\bar{u}_{k+1}\right), \ldots, f\left(\bar{u}_{m}\right)\right\}
$$

since by definition of the kernel $f\left(\bar{u}_{1}\right)=\ldots=f\left(\bar{u}_{k}\right)=\overline{0}$.
So $\left\{f\left(\bar{u}_{k+1}\right), \ldots, f\left(\bar{u}_{m}\right)\right\}$ is a spanning set of $i m(f)$. Let us see that is an independent set. Suppose that

$$
\alpha^{k+1} f\left(\bar{u}_{k+1}\right)+\ldots+\alpha^{m} f\left(\bar{u}_{m}\right)=\overline{0} .
$$

Then

$$
f\left(\alpha^{k+1} \bar{u}_{k+1}+\ldots+\alpha^{m} \bar{u}_{m}\right)=\overline{0} \Rightarrow \alpha^{k+1} \bar{u}_{k+1}+\ldots+\alpha^{m} \bar{u}_{m} \in \operatorname{ker}(f) .
$$

We next use that B is a basis of $\operatorname{ker}(f)$:

$$
\alpha^{k+1} \bar{u}_{k+1}+\ldots+\alpha^{m} \bar{u}_{m}=\alpha^{1} \bar{u}_{1}+\ldots+\alpha^{k} \bar{u}_{k}
$$

and bringing all terms to the first member of the equation

$$
\alpha^{1} \bar{u}_{1}+\ldots+\alpha^{k} \bar{u}_{k}-\alpha^{k+1} \bar{u}_{k+1}-\ldots-\alpha^{m} \bar{u}_{m}=\overline{0}
$$

Since the vectors in B^{\prime} are a basis, in particular they are independent. We deduce that $\alpha^{k+1}=\ldots=\alpha^{m}=0$ and we have proved the required linear independence.

In summary, we have proved that $\left\{f\left(\bar{u}_{k+1}\right), \ldots, f\left(\bar{u}_{m}\right)\right\}$ is an independent, spanning set of $\operatorname{im}(f)$, that is, a basis. So

$$
\operatorname{dim}(i m(f))=m-(k+1)+1=m-k=\operatorname{dim}(U)-\operatorname{dim}(\operatorname{ker}(f)) .
$$

5 The matrix associated to a projection mapping.

We have seen that given two complementary vector subspaces S_{1}, S_{2}, every vector $\bar{x} \in V$ can be uniquely expressed as $\bar{x}=\bar{x}_{1}+\bar{x}_{2}$, with \bar{x}_{1} inS S_{1} and $\bar{x}_{2} \in S_{2}$.

This allows us to define the projection map onto S_{1} along S_{2} :

$$
p_{1}: V \longrightarrow V, \quad p_{1}(\bar{x})=\bar{x}_{1} \text { if } \bar{x}=\bar{x}_{1}+\bar{x}_{2} \text { with } \bar{x}_{1} \in S_{1} \text { and } \bar{x}_{2} \in S_{2}
$$

The steps to find the associated matrix of a projection mapping with respect to a basis C (which normally will be the canonical basis) are:

1. Find bases $\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ and $\left\{v_{1}, v_{2} \ldots, v_{l}\right\}$ respectively of the subspaces S_{1} and S_{2}, expressing their vectors in coordinates with respect to the basis C.
2. Form a base of the space V by joining the previous bases (the fact that the subspaces are complementary guarantees that the union of the basis is a base of the total space):

$$
B=\{\underbrace{u_{1}, u_{2}, \ldots, u_{k}}_{S_{1}}, \underbrace{v_{1}, v_{2} \ldots, v_{l}}_{S_{2}}\} .
$$

3. With respect to the basis B above, the associated matrix is a diagonal matrix, with as many ones on the diagonal as the dimension k of S_{1} and as many zeros as the dimension l of S_{2}.

$$
P_{B}=(\begin{array}{cccccccc}
1 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1 & 0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array} \underbrace{0}_{\operatorname{dim}\left(S_{1}\right)=k} \begin{array}{l}
\operatorname{dim}\left(S_{2}\right)=l
\end{array})
$$

The matrix P_{B} has this form because the vectors of S_{1}, when projected onto S_{1}, remain invariant. On the contrary, the vectors S_{2}, when projected along to that same subspace, go to the zero vector.
4. Finally we make a change of basis to express the associated matrix in the starting base C :

$$
P_{C}=M_{C B} P_{B} M_{B C}=M_{C B} P_{M} M_{C B}^{-1} .
$$

6 Composition of linear maps.

Proposition 6.1 Let $f: U \longrightarrow V$ and $g: V \longrightarrow W$ be two linear maps. Then the composition map $g \circ f$ is also a linear map.

Proof: Let $\bar{x}, \bar{x}^{\prime} \in U$ and $\alpha, \beta \in \mathbb{K}$. We have:

$$
\begin{aligned}
(g \circ f)\left(\alpha \bar{x}+\beta \bar{x}^{\prime}\right) & \left.=g\left(f\left(\alpha \bar{x}+\beta \bar{x}^{\prime}\right)\right)=\quad \text { (linearity of } f\right) \\
& \left.=g\left(\alpha f(\bar{x})+\beta f\left(\bar{x}^{\prime}\right)\right)=\quad \quad \text { (linearity of } g\right) \\
& =\alpha g(f(\bar{x}))+\beta g\left(f\left(\bar{x}^{\prime}\right)\right)=\alpha(g \circ f)(\bar{x})+\beta(g \circ f)\left(\bar{x}^{\prime}\right) .
\end{aligned}
$$

If we have bases in each of the vector spaces U, V and W :

$$
B_{1}=\left\{\bar{u}_{1}, \ldots, \bar{u}_{m}\right\}, \quad B_{2}=\left\{\bar{v}_{1}, \ldots, \bar{v}_{n}\right\}, \quad B_{3}=\left\{\bar{w}_{1}, \ldots, \bar{w}_{p}\right\} .
$$

and we call $h=g \circ f$ the composition map, we can see how the matrices $F_{B_{2} B_{1}}$, $G_{B_{3} B_{2}}$ and $H_{B_{3} B_{1}}$ are related. If we denote the coordinates of the vectors $\bar{x}, \bar{y}=f(\bar{x})$, $\bar{z}=h(\bar{x})=g(\bar{y})$, by $(x),(y),(z)$ with respect to the bases B_{1}, B_{2} and B_{3} respectively, we know that

$$
(y)=F_{B_{2} B_{1}}(x) ; \quad(z)=G_{B_{3} B_{2}}(y) ; \quad(z)=H_{B_{3} B_{1}}(x)
$$

Therefore:

$$
(z)=G_{B_{3} B_{2}}(y)=G_{B_{3} B_{2}} F_{B_{2} B_{1}}(x)
$$

and we deduce that:

$$
\text { If } h=g \circ f, \quad H_{B_{3} B_{1}}=G_{B_{3} B_{2}} F_{B_{2} B_{1}}
$$

7 Classification of linear maps.

7.1 Monomorphisms.

Definition 7.1 A monomoprhism is an injective linear map.

We next collect some properties of monomorphisms.

1. A linear map $f: U \longrightarrow V$ es injective $\Longleftrightarrow \operatorname{ker}(f)=\{\overline{0}\}$.

Proof:

\Longrightarrow : Suppose that $f: U \longrightarrow W$ is an injective linear map. Then:

$$
\begin{array}{r}
\bar{x} \in \operatorname{ker}(f) \Rightarrow f(\bar{x})=\overline{0} \Rightarrow f(\bar{x})=f(\overline{0}) \underset{\substack{\uparrow \\
f \text { injective }}}{\Rightarrow} \quad \bar{x}=\overline{0} .
\end{array}
$$

and thus $\operatorname{ker}(f)=\{\overline{0}\}$.
\Longleftarrow : Suppose that $\operatorname{ker}(f)=\{\overline{0}\}$. Then:

$$
\begin{aligned}
f(\bar{x})=f\left(\bar{x}^{\prime}\right) & \Rightarrow f(\bar{x})-f\left(\bar{x}^{\prime}\right)=\overline{0} \Rightarrow f\left(\bar{x}-\bar{x}^{\prime}\right)=\overline{0} \Rightarrow \\
& \Rightarrow \bar{x}-\bar{x}^{\prime} \in \operatorname{ker}(f) \Rightarrow \bar{x}-\bar{x}^{\prime}=\overline{0} \Rightarrow \bar{x}=\bar{x}^{\prime}
\end{aligned}
$$

and therefore f is injective.
2. If $f: U \longrightarrow V$ is a monomorphism between vector spaces of finite dimension then $\operatorname{dim}(U) \leq \operatorname{dim}(V)$.
Proof: It is sufficient to note that $\operatorname{im}(f) \subset V$ and also that (because f is injective) $\operatorname{ker}(f)=\{\overline{0}\}$. Then:

$$
\operatorname{dim}(U)=\operatorname{dim}(i m(f))+\operatorname{dim}(\operatorname{ker}(f))=\operatorname{dim}(\operatorname{im}(f)) \leq \operatorname{dim}(V)
$$

7.2 Epimorphisms.

Definition 7.2 An epimorphism is a surjective linear map.

The following are some properties of epimorphisms:

1. If $f: U \longrightarrow V$ is an epimorphism between vector spaces of finite dimension then $\operatorname{dim}(U) \geq \operatorname{dim}(V)$.
Proof: It is sufficient to note that $\operatorname{im}(f)=V$, because f is surjective. Then:

$$
\operatorname{dim}(U)=\operatorname{dim}(i m(f))+\operatorname{dim}(\operatorname{ker}(f)) \geq \operatorname{dim}(\operatorname{im}(f))=\operatorname{dim}(V) .
$$

7.3 Isomorphisms.

Definition 7.3 An isomorphism is a bijective linear map.

The following are some properties of isomorphisms:

1. If f is a linear map, [f is bijective $\Longleftrightarrow \operatorname{ker}(f)=\overline{0}$ and $\operatorname{im}(f)=U]$.

Proof: It is sufficient to note that:

- f bijective $\Longleftrightarrow f$ injective and surjective $\Longleftrightarrow \operatorname{ker}(f)=\overline{0}$ and $\operatorname{im}(f)=U$.

2. If $f: U \longrightarrow V$ is an isomorphism, then its inverse map $f^{-1}: V \longrightarrow U$ is an isomorphism.
Proof: Since f is bijective, we know that its inverse map f^{-1} exists and is also bijective. It remains to prove that f^{-1} is linear.
Let $\bar{y}, \bar{y}^{\prime} \in V$ and $\alpha, \beta \in \mathbb{K}$. Suppose that $f^{-1}(\bar{y})=\bar{x}$ and $f^{-1}\left(\bar{y}^{\prime}\right)=\bar{x}^{\prime}$. Then:

$$
\begin{gathered}
f^{-1}(\bar{y})=\bar{x} \Rightarrow f(\bar{x})=\bar{y} \quad \Rightarrow \quad f\left(\alpha \bar{x}+\beta \bar{x}^{\prime}\right)=\alpha f(\bar{x})+\beta f\left(\bar{x}^{\prime}\right)=\alpha \bar{y}+\beta \bar{y}^{\prime} . \\
f^{-1}\left(\bar{y}^{\prime}\right)=\bar{x}^{\prime} \Rightarrow f\left(\bar{x}^{\prime}\right)=\bar{y}^{\prime}
\end{gathered} \quad \Rightarrow \quad f \quad .
$$

Therefore:

$$
f^{-1}\left(\alpha \bar{y}+\beta \bar{y}^{\prime}\right)=\alpha \bar{x}+\beta \bar{x}^{\prime}=\alpha f^{-1}(\bar{y})+\beta f^{-1}\left(\bar{y}^{\prime}\right) .
$$

3. The composition of two isomorphisms is an isomorphism.

It is sufficient to note that the composition of linear maps is a linear map and that the composition of bijective maps is a bijective map.
4. Any two spaces with the same dimension are isomorphic.

Proof: We can prove it in two ways:

- We have seen that any vector space of dimension n is isomorphic to \mathbb{K}^{n}. Thus two spaces of the same dimension are isomorphic to each other.
- Directly, if U and V are two n-dimensional vector spaces and we have bases

$$
B_{1}=\left\{\bar{u}_{1}, \ldots, u_{n}\right\} ; \quad B_{2}=\left\{\bar{v}_{1}, \ldots, \bar{v}_{n}\right\}
$$

respectively of U and V, we can define the linear map $f: U \longrightarrow V$ as the one which acts on the base B_{1} as follows:

$$
f\left(\bar{u}_{1}\right)=\bar{v}_{1} ; \quad \ldots \quad f\left(\bar{u}_{n}\right)=\bar{v}_{n} ;
$$

The matrix associated to f with respect to the bases B_{1} and B_{2} is $F_{B_{2} B_{1}}=I d$. Therefore this map is invertible. Its associated matrix is $F_{B_{1} B_{2}}^{\prime}=\left(F_{B_{2} B_{1}}\right)^{-1}=$ $I d$. Any map which has an inverse is bijective.
5. If there is an isomorphism $f: U \longrightarrow V$ between U and V then $\operatorname{dim}(U)=$ $\operatorname{dim}(V)$.
Proof: Since f is injective we know that $\operatorname{dim}(U) \leq \operatorname{dim}(V)$. Becuase f is surjective, $\operatorname{dim}(U) \geq \operatorname{dim}(V)$. Combining both facts we obtain the equality of the dimensions.

7.4 Endomorphisms.

Definition 7.4 An endomorphism is a linear map from a vector space to itself:

$$
f: U \longrightarrow U .
$$

Definition 7.5 An automorphism is a bijective endomorphism.

In the next chapter we will study endomorphisms of finite vector spaces in detail.

8 Vector space of homomorphisms.

Given two vector spaces U, V we denote by $\operatorname{Hom}(U, V)$ the set of all linear maps from U to V. On this set one can define two operations: the sum of maps (internal) and the product by a scalar (external):

- The sum of two linear maps is defined as

$$
(f+g)(\bar{x})=f(\bar{x})+g(\bar{x}), \quad \forall f, g \in \operatorname{Hom}(U, V), \quad \forall \bar{x} \in U .
$$

- The product of a linear mapping by a scalar is defined as

$$
(\lambda f)(\bar{x})=\lambda f(\bar{x}), \quad \forall f \in \operatorname{Hom}(U, V), \quad \lambda \in \mathbb{K}, \quad \forall \bar{x} \in U .
$$

It is easy to see that with these operations $\operatorname{Hom}(U, V)$ has a vector space structure over \mathbb{K}.

Proposition 8.1 If U, V are vector spaces of dimension m and n respectively, $\operatorname{Hom}(U, V)$ is a vector space of dimension $n \cdot m$.

Proof: Choose two bases B_{1} and B_{2} of U and V respectively.

$$
B_{1}=\left\{\bar{u}_{1}, \ldots, \bar{u}_{m}\right\} ; \quad B_{2}=\left\{\bar{v}_{1}, \ldots, \bar{v}_{2}\right\} .
$$

We define the following map between the vector spaces $\operatorname{Hom}(U, V)$ and $\mathcal{M}_{n \times m}(\mathbb{K})$:

$$
\begin{array}{clc}
\pi: \quad \operatorname{Hom}(V, U) & \longrightarrow & \mathcal{M}_{n \times m}(\mathbb{K}) \\
f & \longrightarrow & F_{B_{2} B_{1}}
\end{array}
$$

which associates to each linear map in $\operatorname{Hom}(U, V)$ its associated matrix with respect to the previously fixed bases.

The map π satifies:

- It is linear. Indeed,

$$
\pi(\alpha f+\beta g)=\alpha F_{B_{2} B_{1}}+\beta G_{B_{2} B_{1}}=\alpha \pi(f)+\beta \pi(g)
$$

for any $\alpha, \beta \in \mathbb{K}$ and $f, g \in \operatorname{Hom}(U, V)$.

- It is injective. Indeed,

$$
f \in \operatorname{ker}(\pi) \Rightarrow F_{B_{2} B_{1}}=\Omega \Rightarrow f=0 .
$$

- It is surjective. Indeed, given any matrix $F \in \mathcal{M}_{n \times m}(\mathbb{K})$ we can always define a linear map of U on V whose associated matrix with respect to B_{1} and B_{2} is F. Just take

$$
f\left(x^{j}\right)=\left(\bar{v}_{i}\right) F\left(x^{j}\right)
$$

where $\left(x^{j}\right)$ are the coordinates of any vector of U with respect to the basis B_{1}.
Thus π is an isomorphism and

$$
\operatorname{dim}(\operatorname{Hom}(V, U))=\operatorname{dim}\left(\mathcal{M}_{n \times m}(\mathbb{K})=n \cdot m .\right.
$$

8.1 Dual space.

As a particular case of a vector space of homomorphisms, we define

Definition 8.2 Given a vector space U over the field \mathbb{K}, the dual space of U, denoted by U^{*}, is the vector space $\operatorname{Hom}(U, \mathbb{K})$.

The elements of U^{*} are linear maps:

$$
f: U \longrightarrow \mathbb{K}
$$

and are often called linear forms or covectors.

It is clear from the previous discussion that $\operatorname{dim}\left(U^{*}\right)=\operatorname{dim}(U)$.

