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Part III

Vector spaces.

1. Vector spaces and vector subspaces.

1 Vector spaces.

1.1 Definition.

Definition 1.1 Let IK be a conmutative field. A vector space over IK is a non-
empty set with two operations satisfying the following properties:

1. There is an internal operation + : V ×V → V (called vector addition) such that
(V,+) is an abelian group, that is, it satisfies:

(a) Associativity: x̄+ (ȳ + z̄) = (x̄+ ȳ) + z̄, for any x̄, ȳ, z̄ ∈ V .

(b) Identity element: ∃0̄ ∈ V such that 0̄ + x̄ = x̄+ 0̄ = x̄, for any x̄ ∈ V .

(c) Inverse element: for any x̄ ∈ V , ∃(−x̄) ∈ V with

x̄+ (−x̄) = (−x̄) + x̄ = 0̄.

(d) Commutativity: x̄+ ȳ = ȳ + x̄, for any x̄, ȳ ∈ V .

2. There is an external operation (·) : IK× V −→ V verifying:

(a) 1 · x̄ = x̄ for any x̄ ∈ V .

(b) (αβ) · x̄ = α · (β · x̄), for any α, β ∈ IK and x̄ ∈ V .

(c) (α+ β) · x̄ = α · x̄+ β · x̄, for any α, β ∈ IK and x̄ ∈ V .

(d) α · (x̄+ ȳ) = α · x̄+ α · ȳ, for any x̄, ȳ ∈ V and α ∈ IK.

The elements of the vector space V are called vectors.

Some of the most common examples of vector spaces are:

1. V = IK is a vector space over IK.

2. V =Mm×n(IK) is the vector space of all matrices m× n with entries in IK.

3. V = Sn×n(IK) is the vector space of all symmetric matrices n× n with entries
in IK.

4. V = Pn(IK) is the vector space of polynomials of degree at most n with coeffi-
cients in IK.

1.2 Properties.

1. α · 0̄ = 0̄, for any α ∈ IK.

Proof: We have:

α · 0̄ = α · (0̄ + 0̄) = α · 0̄ + α · 0̄ ⇒ α · 0̄ = 0̄.

2. 0 · x̄ = 0̄, for any x̄ ∈ V .

Proof: We have:

0 · x̄ = (0 + 0) · x̄ = 0 · x̄+ 0 · x̄ ⇒ 0 · x̄ = 0̄.

3. α · x̄ = 0̄ ⇒ α = 0, or x̄ = 0.

Proof: If α · x̄ = 0̄ and α 6= 0 then α has an inverse and:

x̄ = 1 · x̄ = (α−1α) · x̄ = α−1 · (α · x̄) = α−1 · 0̄ = 0̄.

4. (−1) · x̄ = −x̄, for any x̄ ∈ V .

Proof: It is sufficient to note that:

(−1) · x̄+ x̄ = (−1 + 1) · x̄ = 0 · x̄ = 0̄
x̄+ (−1) · x̄ = (1− 1) · x̄ = 0 · x̄ = 0̄

}
⇒ − x̄ = (−1) · x̄.

5. (−α) · x̄ = α · (−x̄) = −(α · x̄), for any α ∈ IK, x̄ ∈ V .

Proof: From the previous properties:

(−α) · x̄ = (−1) · (α · x̄) = −(α · x̄).
(−α) · x̄ = (α) · ((−1) · x̄) = α · (−x̄).

6. If α 6= 0 and α · x̄ = α · ȳ then x̄ = ȳ.

Proof: If α 6= 0 then its inverse exists and:

α · x̄ = α · ȳ ⇒ (α−1α) · x̄ = α−1α) · ȳ ⇒ x̄ = ȳ.

7. If x̄ 6= 0̄ and α · x̄ = β · x̄ then α = β.

Proof: We have:
α · x̄ = β · x̄ ⇒ (α− β) · x̄ = 0̄.

Since x̄ = 0̄, from the previous properties we deduce that:

α− β = 0 ⇒ α = β.

2 Vector subspaces.

2.1 Definition and characterization.

Definition 2.1 Given a vector space V over a field IK, a nonempty subset S ⊂ V is
said to be a vector subspace or linear subspace of V if S is a vector space over
IK under the operations of V .
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In practice, to identify vector subspaces, one usually applies one of the following
characterizations:

Theorem 2.2 Let V be a vector space over IK and S ⊂ V a nonempty subset. S is
a linear subspace if and only if it satisfies:

1. x̄+ ȳ ∈ S, for any x̄, ȳ ∈ S.

2. λ · x̄ ∈ S, for any λ ∈ IK, x̄ ∈ S.

Equivalently, if it satisfies:

(a) α · x̄+ β · ȳ ∈ S, for any x̄, ȳ ∈ S, α, β ∈ IK.

Proof: When conditions 1 and 2 are satisfied both the internal and external opera-
tions of V restrict to S. Thus they satisfy the eight properties from Definition 1.1,
and S is a vector space.

Conversely, if S is a vector subspace of V , the internal and external operations
must restrict to S and conditions 1 and 2 hold.

Finally, let us prove the equivalence between conditions 1, 2 and condition (a).

1, 2 ⇒ a:

By condition 2:
x̄ ∈ S e α ∈ IK ⇒ α · x̄ ∈ S.
ȳ ∈ S e β ∈ IK ⇒ β · ȳ ∈ S.

Hence

By condition 1:
α · x̄ ∈ S
β · ȳ ∈ S

}
⇒ α · x̄+ β · ȳ ∈ S.

a ⇒ 1 ,2:

Applying the condition (a) with α = 1, β = 1 we obtain condition 1, x̄+ ȳ ∈ S.

Applying the condition (a) with β = 0 we obtain condition 2, α · x̄ ∈ S.

Remark 2.3 Any vector space V contains at least two linear subspaces, called triv-
ial: the whole space V and the zero subspace {0̄}.

2.2 Intersection of linear subspaces.

Proposition 2.4 Let S1 and S2 be two linear subspaces of V . Their intersection
S1 ∩ S2 is a linear subspace.

Proof: First note that S1 ∩ S2 is nonempty, because 0̄ ∈ S1 and 0̄ ∈ S2. Next, let
us check that condition (a) holds. Let x̄, ȳ ∈ S1 ∩ S2 and α, β ∈ IK. We have:

x̄, ȳ ∈ S1 ∩ S2 ⇒ x̄, ȳ ∈ S1 ⇒ α · x̄+ β · ȳ ∈ S1

x̄, ȳ ∈ S1 ∩ S2 ⇒ x̄, ȳ ∈ S2 ⇒ α · x̄+ β · ȳ ∈ S2

}
⇒ α·x̄+β ·ȳ ∈ S1∩S2.

2.3 Sum of linear subspaces.

First, note that the union of vector subspaces need not be a vector subspace. For
example, consider:

V = IR2; S1 = {(x, 0) ∈ IR2, x ∈ IR}; S2 = {(0, y) ∈ IR2, y ∈ IR}.

Taking (1, 0) ∈ S1 ∪S2 and (0, 1) ∈ S1 ∪S2, we have (1, 0) + (0, 1) = (1, 1) 6∈ S1 ∪S2

which implies that the union of S1 and S2 is not a vector subspace.

However, given two linear subspaces we can define its sum, which will turn out to
be the smallest vector subspace containing the union.

Definition 2.5 Let S1 and S2 two vector subspaces of V , we define the sum of S1

and S2 as:
S1 + S2 = {x̄1 + x̄2 with x̄1 ∈ S1 and x̄2 ∈ S2}

Proposition 2.6 The sum of two subspaces is a subspace.

Proof: Let S1, S2 ∈ V be two subspaces of V . Let x̄, ȳ ∈ S1 +S2 and α, β ∈ IK. We
have:

x̄ ∈ S1 + S2 ⇒ x̄ = x̄1 + x̄2, with x̄1 ∈ S1, x̄2 ∈ S2

ȳ ∈ S1 + S2 ⇒ ȳ = ȳ1 + ȳ2, with ȳ1 ∈ S1, ȳ2 ∈ S2

therefore:

α · x̄+ β · ȳ = α · (x̄1 + x̄2) + β · (ȳ1 + ȳ2) = α · x̄1 + β · ȳ1︸ ︷︷ ︸
∈S1

+α · x̄2 + β · ȳ2︸ ︷︷ ︸
∈S2

∈ S1 + S2.

Proposition 2.7 The sum of two linear subspaces is the smallest vector subspace
containing the union.

Proof: Let S1, S2 ∈ V be two subspaces of V . First, it is clear that S1∪S2 ⊂ S1+S2.
Now, let S be a subspace containing S1 ∪ S2; let us see that S1 + S2 ⊂ S.

x̄ ∈ S1+S2 ⇒ x̄ = x̄1+x̄2 with

{
x̄1 ∈ S1 ⊂ S1 ∪ S2 ⊂ S
x̄2 ∈ S2 ⊂ S1 ∪ S2 ⊂ S

⇒ x̄ = x̄1+x̄2 ∈ S.

This concept can be generalized to any finite number of subspaces.
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Definition 2.8 Let S1, S2, . . . , Sk be subspaces of V . We define their sum as:

S1 + S2 + . . .+ Sk = {x̄1 + x̄2 + . . .+ x̄k with x̄1 ∈ S1, x̄2 ∈ S2, . . . , x̄k ∈ Sk}

2.4 Direct sum.

Definition 2.9 Let S1, S2 be two vector subspaces of U . If S1 ∩ S2 = {0̄}, then the
sum subspace S1 + S2 is called direct sum of S1 and S2 and it is denoted by:

S1 ⊕ S2.

Proposition 2.10 Let S1, S2 be two subspaces of U . The sum S1 + S2 is a direct
sum if and only if any element of S1 + S2 can be uniquely written as a sum of an
element of S1 and an element of S2.

Proof: First, suppose the sum is direct, that is S1 ∩ S2 = {0̄}. Let us prove the
uniqueness of the decomposition. Let x̄ ∈ S1 + S2. If:

x̄ = x̄1 + x̄2 = ȳ1 + ȳ2 with x̄1, ȳ1 ∈ S1 and x̄2, ȳ2 ∈ S2

then

x̄1 − ȳ1 = ȳ2 − x̄2 ∈ S1 ∩ S2 ⇒ x̄1 − ȳ1 = ȳ2 − x̄2 = 0̄ ⇒ x̄1 = ȳ1, x̄2 = ȳ2.

Now, assume the uniqueness of the decomposition and let us see that the sum is
direct. We must prove that S1 ∩ S2 = {0̄}. Let x̄ ∈ S1 ∩ S2; it can be written as:

x̄ = x̄+ 0̄ with x̄ ∈ S1, 0̄ ∈ S2, and also x̄ = 0 + x̄ with 0̄ ∈ S1, x̄ ∈ S2.

By the uniqueness of the decomposition we deduce that x̄ = 0̄.

This concept can be generalized to more than two subspaces.

Definition 2.11 Let S1, S2 . . . , Sk linear subspaces of U . If (S1 + . . .+Si)∩Si+1 =
{0} for any i, 1 ≤ i ≤ k−1 then the sum subspace S1 +S2 + . . .+Sk is called direct
sum of S1, S2, . . . , Sk and it is denoted by:

S1 ⊕ S2 ⊕ . . .⊕ Sk.

Proposition 2.12 Let S1, S2, . . . , Sk be linear subspaces of U . The sum S1 + S2 +
. . .+Sk is a direct sum if and only if any element of S1 +S2 + . . .+Sk can be written
uniquely as sum of elements of S1, S2, . . . , Sk.

Proof: Suppose the sum is direct. Fix x̄ ∈ S1 + . . .+ Sk and suppose that we have
two different decompositions of x̄:

x̄ = x̄1 + . . .+ x̄k = ȳ1 + . . .+ ȳk, x̄i, ȳi ∈ Si, i = 1, 2, . . . , k.

Then, applying that (S1 + . . .+Sk−1) +Sk is a direct sum we see that xk = yk, and:

x̄1 + . . .+ x̄k−1 = ȳ1 + . . .+ ȳk−1.

Now, we use that (S1 + . . .+Sk−2)+Sk−1 is a direct sum and from this xk−1 = yk−1,

x̄1 + . . .+ x̄k−2 = ȳ1 + . . .+ ȳk−2.

Repeating the process, we deduce that xi = yi for i = 1, 2, . . . , k.

Conversely, assume the uniqueness of the decomposition. Let us see that for any
i = 2, . . . , k, (S1 + . . .+ Si) + Si+1 is a direct sum.

Any x̄ ∈ S1 + . . . + Si can be written as sum of elements of S1, . . . , Si. By the
hypothesis this decomposition is unique. Applying Proposition 2.10 we deduce that
the sum is direct, that is, (S1 + . . .+ Si) ∩ Si+1 = {0̄}.

2.5 Complementary subspaces.

Definition 2.13 Let S1, S2 be two subspaces of V . They are called complemen-
tary if:

S1 ∩ S2 = {0}
S1 + S2 = V

or equivalently:

S1 ⊕ S2 = V.

If S1, S2 are complementary subspaces we know that any x̄ ∈ V can be written
uniquely as x̄ = x̄1 + x̄2, with x̄1 ∈ S1 and x̄2 ∈ S2:

x̄1 is called projection of x̄ onto S1 along S2.

x̄2 is called projection of x̄ onto S2 along S1.

It is interesting to note that beyond the algebraic background this concept is very
geometric. An example is represented in the following image. The complementary
subspaces are the plane S1 (in red) and the line S2 (in blue); any vector ~x can be
decomposed as the sum of a pair of vectors ~x1 and ~x2 in each of the subspaces.
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Geometrically the vector ~x1 is constructed by taking the line parallel to S2 through
the endpoint of the vector ~x and intersecting it with the plane S1. Hence it is called
the projection of x̄ onto S1 along S2.

Analogously, the vector ~x2 is constructed by intersecting the plane parallel to S1

through the endpoint of ~x with the line S1.

Based on this decomposition, we can define the following projection functions:

p1 : V −→ V p2 : V −→ V
x̄ −→ x̄1 x̄ −→ x̄2

Function p1 is called projection function onto S1 along S2 and function p2 is called
projection function onto S2 along S1 .

These functions satisfy the following properties:

1. p1 + p2 = Id.

2. p1 ◦ p1 = p1 and p2 ◦ p2 = p2.

3. p1 ◦ p2 = p2 ◦ p1 = 0.
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