Part III

Vector spaces.

1. Vector spaces and vector subspaces.

1 Vector spaces.

1.1 Definition.

Definition 1.1 Let \mathbb{K} be a conmutative field. A vector space over \mathbb{K} is a nonempty set with two operations satisfying the following properties:

1. There is an internal operation $+: V \times V \rightarrow V$ (called vector addition) such that $(V,+)$ is an abelian group, that is, it satisfies:
(a) Associativity: $\bar{x}+(\bar{y}+\bar{z})=(\bar{x}+\bar{y})+\bar{z}$, for any $\bar{x}, \bar{y}, \bar{z} \in V$.
(b) Identity element: $\exists \overline{0} \in V$ such that $\overline{0}+\bar{x}=\bar{x}+\overline{0}=\bar{x}$, for any $\bar{x} \in V$.
(c) Inverse element: for any $\bar{x} \in V, \exists(-\bar{x}) \in V$ with

$$
\bar{x}+(-\bar{x})=(-\bar{x})+\bar{x}=\overline{0} .
$$

(d) Commutativity: $\bar{x}+\bar{y}=\bar{y}+\bar{x}$, for any $\bar{x}, \bar{y} \in V$.
2. There is an external operation $(\cdot): \mathbb{K} \times V \longrightarrow V$ verifying:
(a) $1 \cdot \bar{x}=\bar{x}$ for any $\bar{x} \in V$.
(b) $(\alpha \beta) \cdot \bar{x}=\alpha \cdot(\beta \cdot \bar{x})$, for any $\alpha, \beta \in \mathbb{K}$ and $\bar{x} \in V$.
(c) $(\alpha+\beta) \cdot \bar{x}=\alpha \cdot \bar{x}+\beta \cdot \bar{x}$, for any $\alpha, \beta \in \mathbb{K}$ and $\bar{x} \in V$.
(d) $\alpha \cdot(\bar{x}+\bar{y})=\alpha \cdot \bar{x}+\alpha \cdot \bar{y}$, for any $\bar{x}, \bar{y} \in V$ and $\alpha \in \mathbb{K}$.

The elements of the vector space V are called vectors.

Some of the most common examples of vector spaces are:

1. $V=\mathbb{K}$ is a vector space over \mathbb{K}.
2. $V=\mathcal{M}_{m \times n}(\mathbb{K})$ is the vector space of all matrices $m \times n$ with entries in \mathbb{K}.
3. $V=\mathcal{S}_{n \times n}(\mathbb{K})$ is the vector space of all symmetric matrices $n \times n$ with entries in \mathbb{K}.
4. $V=\mathcal{P}_{n}(\mathbb{I K})$ is the vector space of polynomials of degree at most n with coefficients in \mathbb{K}.

1.2 Properties.

1. $\alpha \cdot \overline{0}=\overline{0}$, for any $\alpha \in \mathbb{K}$.

Proof: We have:

$$
\alpha \cdot \overline{0}=\alpha \cdot(\overline{0}+\overline{0})=\alpha \cdot \overline{0}+\alpha \cdot \overline{0} \Rightarrow \alpha \cdot \overline{0}=\overline{0} .
$$

2. $0 \cdot \bar{x}=\overline{0}$, for any $\bar{x} \in V$.

Proof: We have:

$$
0 \cdot \bar{x}=(0+0) \cdot \bar{x}=0 \cdot \bar{x}+0 \cdot \bar{x} \quad \Rightarrow \quad 0 \cdot \bar{x}=\overline{0}
$$

3. $\alpha \cdot \bar{x}=\overline{0} \Rightarrow \alpha=0, \quad$ or $\quad \bar{x}=0$.

Proof: If $\alpha \cdot \bar{x}=\overline{0}$ and $\alpha \neq 0$ then α has an inverse and:

$$
\bar{x}=1 \cdot \bar{x}=\left(\alpha^{-1} \alpha\right) \cdot \bar{x}=\alpha^{-1} \cdot(\alpha \cdot \bar{x})=\alpha^{-1} \cdot \overline{0}=\overline{0}
$$

4. $(-1) \cdot \bar{x}=-\bar{x}$, for any $\bar{x} \in V$.

Proof: It is sufficient to note that:

$$
\left.\begin{array}{r}
(-1) \cdot \bar{x}+\bar{x}=(-1+1) \cdot \bar{x}=0 \cdot \bar{x}=\overline{0} \\
\bar{x}+(-1) \cdot \bar{x}=(1-1) \cdot \bar{x}=0 \cdot \bar{x}=\overline{0}
\end{array}\right\} \quad \Rightarrow \quad-\bar{x}=(-1) \cdot \bar{x} .
$$

5. $(-\alpha) \cdot \bar{x}=\alpha \cdot(-\bar{x})=-(\alpha \cdot \bar{x})$, for any $\alpha \in \mathbb{K}, \bar{x} \in V$.

Proof: From the previous properties:

$$
\begin{aligned}
& (-\alpha) \cdot \bar{x}=(-1) \cdot(\alpha \cdot \bar{x})=-(\alpha \cdot \bar{x}) \\
& (-\alpha) \cdot \bar{x}=(\alpha) \cdot((-1) \cdot \bar{x})=\alpha \cdot(-\bar{x})
\end{aligned}
$$

6. If $\alpha \neq 0$ and $\alpha \cdot \bar{x}=\alpha \cdot \bar{y}$ then $\bar{x}=\bar{y}$.

Proof: If $\alpha \neq 0$ then its inverse exists and:

$$
\left.\alpha \cdot \bar{x}=\alpha \cdot \bar{y} \quad \Rightarrow \quad\left(\alpha^{-1} \alpha\right) \cdot \bar{x}=\alpha^{-1} \alpha\right) \cdot \bar{y} \quad \Rightarrow \quad \bar{x}=\bar{y}
$$

7. If $\bar{x} \neq \overline{0}$ and $\alpha \cdot \bar{x}=\beta \cdot \bar{x}$ then $\alpha=\beta$.

Proof: We have:

$$
\alpha \cdot \bar{x}=\beta \cdot \bar{x} \quad \Rightarrow \quad(\alpha-\beta) \cdot \bar{x}=\overline{0}
$$

Since $\bar{x}=\overline{0}$, from the previous properties we deduce that:

$$
\alpha-\beta=0 \quad \Rightarrow \quad \alpha=\beta
$$

2 Vector subspaces.

2.1 Definition and characterization.

Definition 2.1 Given a vector space V over a field \mathbb{K}, a nonempty subset $S \subset V$ is said to be a vector subspace or linear subspace of V if S is a vector space over \mathbb{K} under the operations of V.

In practice, to identify vector subspaces, one usually applies one of the following characterizations:

Theorem 2.2 Let V be a vector space over \mathbb{K} and $S \subset V$ a nonempty subset. S is a linear subspace if and only if it satisfies:

1. $\bar{x}+\bar{y} \in S$, for any $\bar{x}, \bar{y} \in S$.
2. $\lambda \cdot \bar{x} \in S$, for any $\lambda \in \mathbb{K}, \bar{x} \in S$.

Equivalently, if it satisfies:
(a) $\alpha \cdot \bar{x}+\beta \cdot \bar{y} \in S$, for any $\bar{x}, \bar{y} \in S, \alpha, \beta \in \mathbb{K}$.

Proof: When conditions 1 and 2 are satisfied both the internal and external operations of V restrict to S. Thus they satisfy the eight properties from Definition 1.1, and S is a vector space.

Conversely, if S is a vector subspace of V, the internal and external operations must restrict to S and conditions 1 and 2 hold.

Finally, let us prove the equivalence between conditions 1, 2 and condition (a).
$\underline{1,2 \Rightarrow a:}$

By condition 2. $\quad \bar{x} \in S$ e $\alpha \in \mathbb{K} \Rightarrow \alpha \cdot \bar{x} \in S$. $\bar{y} \in S$ e $\beta \in \mathbb{K} \Rightarrow \beta \cdot \bar{y} \in S$.

Hence
By condition 1 :

$$
\left.\begin{array}{l}
\alpha \cdot \bar{x} \in S \\
\beta \cdot \bar{y} \in S
\end{array}\right\} \quad \Rightarrow \quad \alpha \cdot \bar{x}+\beta \cdot \bar{y} \in S
$$

a $\quad \Rightarrow \quad 1,2$:
Applying the condition (a) with $\alpha=1, \beta=1$ we obtain condition $1, \bar{x}+\bar{y} \in S$.
Applying the condition (a) with $\beta=0$ we obtain condition $2, \alpha \cdot \bar{x} \in S$.

Remark 2.3 Any vector space V contains at least two linear subspaces, called trivial: the whole space V and the zero subspace $\{\overline{0}\}$.

2.2 Intersection of linear subspaces.

Proposition 2.4 Let S_{1} and S_{2} be two linear subspaces of V. Their intersection $S_{1} \cap S_{2}$ is a linear subspace.

Proof: First note that $S_{1} \cap S_{2}$ is nonempty, because $\overline{0} \in S_{1}$ and $\overline{0} \in S_{2}$. Next, let us check that condition (a) holds. Let $\bar{x}, \bar{y} \in S_{1} \cap S_{2}$ and $\alpha, \beta \in \mathbb{K}$. We have:

$$
\left.\begin{array}{l}
\bar{x}, \bar{y} \in S_{1} \cap S_{2} \quad \Rightarrow \quad \bar{x}, \bar{y} \in S_{1} \quad \Rightarrow \quad \alpha \cdot \bar{x}+\beta \cdot \bar{y} \in S_{1} \\
\bar{x}, \bar{y} \in S_{1} \cap S_{2} \Rightarrow \bar{x}, \bar{y} \in S_{2} \quad \Rightarrow \quad \alpha \cdot \bar{x}+\beta \cdot \bar{y} \in S_{2}
\end{array}\right\} \quad \Rightarrow \quad \alpha \cdot \bar{x}+\beta \cdot \bar{y} \in S_{1} \cap S_{2}
$$

2.3 Sum of linear subspaces.

First, note that the union of vector subspaces need not be a vector subspace. For example, consider:

$$
V=\mathbb{R}^{2} ; \quad S_{1}=\left\{(x, 0) \in \mathbb{R}^{2}, x \in \mathbb{R}\right\} ; \quad S_{2}=\left\{(0, y) \in \mathbb{R}^{2}, y \in \mathbb{R}\right\}
$$

Taking $(1,0) \in S_{1} \cup S_{2}$ and $(0,1) \in S_{1} \cup S_{2}$, we have $(1,0)+(0,1)=(1,1) \notin S_{1} \cup S_{2}$ which implies that the union of S_{1} and S_{2} is not a vector subspace.

However, given two linear subspaces we can define its sum, which will turn out to be the smallest vector subspace containing the union.

Definition 2.5 Let S_{1} and S_{2} two vector subspaces of V, we define the sum of S_{1} and S_{2} as:

$$
S_{1}+S_{2}=\left\{\bar{x}_{1}+\bar{x}_{2} \text { with } \bar{x}_{1} \in S_{1} \text { and } \bar{x}_{2} \in S_{2}\right\}
$$

Proposition 2.6 The sum of two subspaces is a subspace.
Proof: Let $S_{1}, S_{2} \in V$ be two subspaces of V. Let $\bar{x}, \bar{y} \in S_{1}+S_{2}$ and $\alpha, \beta \in \mathbb{K}$. We have:

$$
\begin{aligned}
& \bar{x} \in S_{1}+S_{2} \Rightarrow \bar{x}=\bar{x}_{1}+\bar{x}_{2}, \text { with } \bar{x}_{1} \in S_{1}, \bar{x}_{2} \in S_{2} \\
& \bar{y} \in S_{1}+S_{2} \Rightarrow \bar{y}=\bar{y}_{1}+\bar{y}_{2}, \text { with } \bar{y}_{1} \in S_{1}, \bar{y}_{2} \in S_{2}
\end{aligned}
$$

therefore:

$$
\alpha \cdot \bar{x}+\beta \cdot \bar{y}=\alpha \cdot\left(\bar{x}_{1}+\bar{x}_{2}\right)+\beta \cdot\left(\bar{y}_{1}+\bar{y}_{2}\right)=\underbrace{\alpha \cdot \bar{x}_{1}+\beta \cdot \bar{y}_{1}}_{\in S_{1}}+\underbrace{\alpha \cdot \bar{x}_{2}+\beta \cdot \bar{y}_{2}}_{\in S_{2}} \in S_{1}+S_{2}
$$

Proposition 2.7 The sum of two linear subspaces is the smallest vector subspace containing the union.

Proof: Let $S_{1}, S_{2} \in V$ be two subspaces of V. First, it is clear that $S_{1} \cup S_{2} \subset S_{1}+S_{2}$. Now, let S be a subspace containing $S_{1} \cup S_{2}$; let us see that $S_{1}+S_{2} \subset S$.

$$
\bar{x} \in S_{1}+S_{2} \quad \Rightarrow \quad \bar{x}=\bar{x}_{1}+\bar{x}_{2} \text { with }\left\{\begin{array}{l}
\bar{x}_{1} \in S_{1} \subset S_{1} \cup S_{2} \subset S \\
\bar{x}_{2} \in S_{2} \subset S_{1} \cup S_{2} \subset S
\end{array} \quad \Rightarrow \quad \bar{x}=\bar{x}_{1}+\bar{x}_{2} \in S .\right.
$$

This concept can be generalized to any finite number of subspaces.

Definition 2.8 Let $S_{1}, S_{2}, \ldots, S_{k}$ be subspaces of V. We define their sum as:

$$
S_{1}+S_{2}+\ldots+S_{k}=\left\{\bar{x}_{1}+\bar{x}_{2}+\ldots+\bar{x}_{k} \text { with } \bar{x}_{1} \in S_{1}, \bar{x}_{2} \in S_{2}, \ldots, \bar{x}_{k} \in S_{k}\right\}
$$

2.4 Direct sum.

Definition 2.9 Let S_{1}, S_{2} be two vector subspaces of U. If $S_{1} \cap S_{2}=\{\overline{0}\}$, then the sum subspace $S_{1}+S_{2}$ is called direct sum of S_{1} and S_{2} and it is denoted by:

$$
S_{1} \oplus S_{2}
$$

Proposition 2.10 Let S_{1}, S_{2} be two subspaces of U. The sum $S_{1}+S_{2}$ is a direct sum if and only if any element of $S_{1}+S_{2}$ can be uniquely written as a sum of an element of S_{1} and an element of S_{2}.

Proof: First, suppose the sum is direct, that is $S_{1} \cap S_{2}=\{\overline{0}\}$. Let us prove the uniqueness of the decomposition. Let $\bar{x} \in S_{1}+S_{2}$. If:

$$
\bar{x}=\bar{x}_{1}+\bar{x}_{2}=\bar{y}_{1}+\bar{y}_{2} \quad \text { with } \bar{x}_{1}, \bar{y}_{1} \in S_{1} \quad \text { and } \quad \bar{x}_{2}, \bar{y}_{2} \in S_{2}
$$

then

$$
\bar{x}_{1}-\bar{y}_{1}=\bar{y}_{2}-\bar{x}_{2} \in S_{1} \cap S_{2} \quad \Rightarrow \quad \bar{x}_{1}-\bar{y}_{1}=\bar{y}_{2}-\bar{x}_{2}=\overline{0} \quad \Rightarrow \quad \bar{x}_{1}=\bar{y}_{1}, \quad \bar{x}_{2}=\bar{y}_{2} .
$$

Now, assume the uniqueness of the decomposition and let us see that the sum is direct. We must prove that $S_{1} \cap S_{2}=\{\overline{0}\}$. Let $\bar{x} \in S_{1} \cap S_{2}$; it can be written as:

$$
\bar{x}=\bar{x}+\overline{0} \text { with } \bar{x} \in S_{1}, \overline{0} \in S_{2}, \quad \text { and also } \quad \bar{x}=0+\bar{x} \text { with } \overline{0} \in S_{1}, \bar{x} \in S_{2}
$$

By the uniqueness of the decomposition we deduce that $\bar{x}=\overline{0}$.
This concept can be generalized to more than two subspaces.

Definition 2.11 Let $S_{1}, S_{2} \ldots, S_{k}$ linear subspaces of U. If $\left(S_{1}+\ldots+S_{i}\right) \cap S_{i+1}=$ $\{0\}$ for any $i, 1 \leq i \leq k-1$ then the sum subspace $S_{1}+S_{2}+\ldots+S_{k}$ is called direct sum of $S_{1}, S_{2}, \ldots, S_{k}$ and it is denoted by:

$$
S_{1} \oplus S_{2} \oplus \ldots \oplus S_{k}
$$

Proposition 2.12 Let $S_{1}, S_{2}, \ldots, S_{k}$ be linear subspaces of U. The sum $S_{1}+S_{2}+$ $\ldots+S_{k}$ is a direct sum if and only if any element of $S_{1}+S_{2}+\ldots+S_{k}$ can be written uniquely as sum of elements of $S_{1}, S_{2}, \ldots, S_{k}$.

Proof: Suppose the sum is direct. Fix $\bar{x} \in S_{1}+\ldots+S_{k}$ and suppose that we have two different decompositions of \bar{x} :

$$
\bar{x}=\bar{x}_{1}+\ldots+\bar{x}_{k}=\bar{y}_{1}+\ldots+\bar{y}_{k}, \quad \bar{x}_{i}, \bar{y}_{i} \in S_{i}, \quad i=1,2, \ldots, k
$$

Then, applying that $\left(S_{1}+\ldots+S_{k-1}\right)+S_{k}$ is a direct sum we see that $x_{k}=y_{k}$, and:

$$
\bar{x}_{1}+\ldots+\bar{x}_{k-1}=\bar{y}_{1}+\ldots+\bar{y}_{k-1} .
$$

Now, we use that $\left(S_{1}+\ldots+S_{k-2}\right)+S_{k-1}$ is a direct sum and from this $x_{k-1}=y_{k-1}$,

$$
\bar{x}_{1}+\ldots+\bar{x}_{k-2}=\bar{y}_{1}+\ldots+\bar{y}_{k-2} .
$$

Repeating the process, we deduce that $x_{i}=y_{i}$ for $i=1,2, \ldots, k$.
Conversely, assume the uniqueness of the decomposition. Let us see that for any $i=2, \ldots, k,\left(S_{1}+\ldots+S_{i}\right)+S_{i+1}$ is a direct sum.

Any $\bar{x} \in S_{1}+\ldots+S_{i}$ can be written as sum of elements of S_{1}, \ldots, S_{i}. By the hypothesis this decomposition is unique. Applying Proposition 2.10 we deduce that the sum is direct, that is, $\left(S_{1}+\ldots+S_{i}\right) \cap S_{i+1}=\{\overline{0}\}$.

2.5 Complementary subspaces.

Definition 2.13 Let S_{1}, S_{2} be two subspaces of V. They are called complementary if:

$$
\begin{aligned}
S_{1} \cap S_{2} & =\{0\} \\
S_{1}+S_{2} & =V
\end{aligned}
$$

or equivalently:

$$
S_{1} \oplus S_{2}=V
$$

If S_{1}, S_{2} are complementary subspaces we know that any $\bar{x} \in V$ can be written uniquely as $\bar{x}=\bar{x}_{1}+\bar{x}_{2}$, with $\bar{x}_{1} \in S_{1}$ and $\bar{x}_{2} \in S_{2}$:
\bar{x}_{1} is called projection of \bar{x} onto S_{1} along S_{2}.
\bar{x}_{2} is called projection of \bar{x} onto S_{2} along S_{1}.
It is interesting to note that beyond the algebraic background this concept is very geometric. An example is represented in the following image. The complementary subspaces are the plane S_{1} (in red) and the line S_{2} (in blue); any vector \vec{x} can be decomposed as the sum of a pair of vectors \vec{x}_{1} and \vec{x}_{2} in each of the subspaces.

Geometrically the vector \vec{x}_{1} is constructed by taking the line parallel to S_{2} through the endpoint of the vector \vec{x} and intersecting it with the plane S_{1}. Hence it is called the projection of \bar{x} onto S_{1} along S_{2}.

Analogously, the vector \vec{x}_{2} is constructed by intersecting the plane parallel to S_{1} through the endpoint of \vec{x} with the line S_{1}.

Based on this decomposition, we can define the following projection functions:

$$
p_{1}: V \longrightarrow \underset{\bar{x}}{V} \longrightarrow p_{2}: V \longrightarrow \overline{\bar{x}} \quad V \longrightarrow \overline{\bar{x}}
$$

Function p_{1} is called projection function onto S_{1} along S_{2} and function p_{2} is called projection function onto S_{2} along S_{1}.

These functions satisfy the following properties:

1. $p_{1}+p_{2}=I d$.
2. $p_{1} \circ p_{1}=p_{1}$ and $p_{2} \circ p_{2}=p_{2}$.
3. $p_{1} \circ p_{2}=p_{2} \circ p_{1}=0$.
