Part III

Vector spaces.

1. Vector spaces and vector subspaces.

1 Vector spaces.

1.1 Definition.

Definition 1.1 Let \mathbb{K} be a commutative field. A vector space over \mathbb{K} is a nonempty set with two operations satisfying the following properties:

- 1. There is an internal operation $+: V \times V \rightarrow V$ (called vector addition) such that (V, +) is an abelian group, that is, it satisfies:
 - (a) Associativity: $\bar{x} + (\bar{y} + \bar{z}) = (\bar{x} + \bar{y}) + \bar{z}$, for any $\bar{x}, \bar{y}, \bar{z} \in V$.
 - (b) Identity element: $\exists \bar{0} \in V$ such that $\bar{0} + \bar{x} = \bar{x} + \bar{0} = \bar{x}$, for any $\bar{x} \in V$.
 - (c) Inverse element: for any $\bar{x} \in V$, $\exists (-\bar{x}) \in V$ with

$$\bar{x} + (-\bar{x}) = (-\bar{x}) + \bar{x} = \bar{0}.$$

- (d) Commutativity: $\bar{x} + \bar{y} = \bar{y} + \bar{x}$, for any $\bar{x}, \bar{y} \in V$.
- 2. There is an external operation $(\cdot): \mathbb{K} \times V \longrightarrow V$ verifying:
 - (a) $1 \cdot \bar{x} = \bar{x}$ for any $\bar{x} \in V$.
 - (b) $(\alpha\beta) \cdot \bar{x} = \alpha \cdot (\beta \cdot \bar{x})$, for any $\alpha, \beta \in \mathbb{K}$ and $\bar{x} \in V$.
 - (c) $(\alpha + \beta) \cdot \bar{x} = \alpha \cdot \bar{x} + \beta \cdot \bar{x}$, for any $\alpha, \beta \in \mathbb{K}$ and $\bar{x} \in V$.
 - (d) $\alpha \cdot (\bar{x} + \bar{y}) = \alpha \cdot \bar{x} + \alpha \cdot \bar{y}$, for any $\bar{x}, \bar{y} \in V$ and $\alpha \in \mathbb{IK}$.

The elements of the vector space V are called vectors.

Some of the most common examples of vector spaces are:

- 1. $V = \mathbb{I} \mathbb{K}$ is a vector space over $\mathbb{I} \mathbb{K}$.
- 2. $V = \mathcal{M}_{m \times n}(\mathbb{K})$ is the vector space of all matrices $m \times n$ with entries in \mathbb{K} .
- 3. $V = S_{n \times n}(\mathbb{K})$ is the vector space of all symmetric matrices $n \times n$ with entries in \mathbb{K} .
- 4. $V = \mathcal{P}_n(\mathbb{K})$ is the vector space of polynomials of degree at most n with coefficients in \mathbb{K} .

1.2 Properties.

1. $\alpha \cdot \overline{0} = \overline{0}$, for any $\alpha \in \mathbb{K}$. **Proof:** We have:

$$\alpha \cdot \bar{0} = \alpha \cdot (\bar{0} + \bar{0}) = \alpha \cdot \bar{0} + \alpha \cdot \bar{0} \quad \Rightarrow \quad \alpha \cdot \bar{0} = \bar{0}.$$

2. $0 \cdot \bar{x} = \bar{0}$, for any $\bar{x} \in V$.

Proof: We have:

$$0 \cdot \bar{x} = (0+0) \cdot \bar{x} = 0 \cdot \bar{x} + 0 \cdot \bar{x} \quad \Rightarrow \quad 0 \cdot \bar{x} = \bar{0}.$$

3. $\alpha \cdot \bar{x} = \bar{0} \implies \alpha = 0$, or $\bar{x} = 0$. **Proof:** If $\alpha \cdot \bar{x} = \bar{0}$ and $\alpha \neq 0$ then α has an inverse and:

$$\bar{x} = 1 \cdot \bar{x} = (\alpha^{-1}\alpha) \cdot \bar{x} = \alpha^{-1} \cdot (\alpha \cdot \bar{x}) = \alpha^{-1} \cdot \bar{0} = \bar{0}.$$

4. $(-1) \cdot \bar{x} = -\bar{x}$, for any $\bar{x} \in V$. **Proof:** It is sufficient to note that:

$$\begin{array}{c} (-1) \cdot \bar{x} + \bar{x} = (-1+1) \cdot \bar{x} = 0 \cdot \bar{x} = \bar{0} \\ \bar{x} + (-1) \cdot \bar{x} = (1-1) \cdot \bar{x} = 0 \cdot \bar{x} = \bar{0} \end{array} \right\} \quad \Rightarrow \quad -\bar{x} = (-1) \cdot \bar{x}.$$

5. $(-\alpha) \cdot \bar{x} = \alpha \cdot (-\bar{x}) = -(\alpha \cdot \bar{x})$, for any $\alpha \in \mathbb{K}, \ \bar{x} \in V$. **Proof:** From the previous properties:

$$(-\alpha) \cdot \bar{x} = (-1) \cdot (\alpha \cdot \bar{x}) = -(\alpha \cdot \bar{x}).$$
$$(-\alpha) \cdot \bar{x} = (\alpha) \cdot ((-1) \cdot \bar{x}) = \alpha \cdot (-\bar{x}).$$

6. If $\alpha \neq 0$ and $\alpha \cdot \bar{x} = \alpha \cdot \bar{y}$ then $\bar{x} = \bar{y}$. **Proof:** If $\alpha \neq 0$ then its inverse exists and:

$$\alpha \cdot \bar{x} = \alpha \cdot \bar{y} \quad \Rightarrow \quad (\alpha^{-1}\alpha) \cdot \bar{x} = \alpha^{-1}\alpha) \cdot \bar{y} \quad \Rightarrow \quad \bar{x} = \bar{y}.$$

7. If
$$\bar{x} \neq \bar{0}$$
 and $\alpha \cdot \bar{x} = \beta \cdot \bar{x}$ then $\alpha = \beta$.

Proof: We have:

 $\alpha \cdot \bar{x} = \beta \cdot \bar{x} \quad \Rightarrow \quad (\alpha - \beta) \cdot \bar{x} = \bar{0}.$

Since $\bar{x} = \bar{0}$, from the previous properties we deduce that:

$$\alpha - \beta = 0 \quad \Rightarrow \quad \alpha = \beta.$$

2 Vector subspaces.

2.1 Definition and characterization.

Definition 2.1 Given a vector space V over a field \mathbb{K} , a nonempty subset $S \subset V$ is said to be a vector subspace or linear subspace of V if S is a vector space over \mathbb{K} under the operations of V.

In practice, to identify vector subspaces, one usually applies one of the following characterizations:

Theorem 2.2 Let V be a vector space over \mathbb{K} and $S \subset V$ a <u>nonempty</u> subset. S is a linear subspace if and only if it satisfies:

1.
$$\bar{x} + \bar{y} \in S$$
, for any $\bar{x}, \bar{y} \in S$.

2. $\lambda \cdot \bar{x} \in S$, for any $\lambda \in \mathbb{K}$, $\bar{x} \in S$.

Equivalently, if it satisfies:

(a)
$$\alpha \cdot \bar{x} + \beta \cdot \bar{y} \in S$$
, for any $\bar{x}, \bar{y} \in S$, $\alpha, \beta \in \mathbb{K}$.

Proof: When conditions 1 and 2 are satisfied both the internal and external operations of V restrict to S. Thus they satisfy the eight properties from Definition 1.1, and S is a vector space.

Conversely, if S is a vector subspace of V, the internal and external operations must restrict to S and conditions 1 and 2 hold.

Finally, let us prove the equivalence between conditions 1, 2 and condition (a).

 $1, 2 \Rightarrow a:$

By condition 2:
$$\bar{x} \in S \in \alpha \in \mathbb{K} \Rightarrow \alpha \cdot \bar{x} \in S.$$

 $\bar{y} \in S \in \beta \in \mathbb{K} \Rightarrow \beta \cdot \bar{y} \in S.$

Hence

By condition 1:
$$\begin{array}{c} \alpha \cdot \bar{x} \in S \\ \beta \cdot \bar{y} \in S \end{array} \right\} \quad \Rightarrow \quad \alpha \cdot \bar{x} + \beta \cdot \bar{y} \in S.$$

a \Rightarrow 1,2:

Applying the condition (a) with $\alpha = 1, \beta = 1$ we obtain condition $1, \bar{x} + \bar{y} \in S$.

Applying the condition (a) with $\beta = 0$ we obtain condition 2, $\alpha \cdot \bar{x} \in S$.

Remark 2.3 Any vector space V contains at least two linear subspaces, called **triv**ial: the whole space V and the zero subspace $\{\overline{0}\}$.

2.2 Intersection of linear subspaces.

Proposition 2.4 Let S_1 and S_2 be two linear subspaces of V. Their intersection $S_1 \cap S_2$ is a linear subspace.

Proof: First note that $S_1 \cap S_2$ is nonempty, because $\overline{0} \in S_1$ and $\overline{0} \in S_2$. Next, let us check that condition (a) holds. Let $\overline{x}, \overline{y} \in S_1 \cap S_2$ and $\alpha, \beta \in \mathbb{K}$. We have:

$$\left. \begin{array}{cccc} \bar{x}, \bar{y} \in S_1 \cap S_2 & \Rightarrow & \bar{x}, \bar{y} \in S_1 & \Rightarrow & \alpha \cdot \bar{x} + \beta \cdot \bar{y} \in S_1 \\ \bar{x}, \bar{y} \in S_1 \cap S_2 & \Rightarrow & \bar{x}, \bar{y} \in S_2 & \Rightarrow & \alpha \cdot \bar{x} + \beta \cdot \bar{y} \in S_2 \end{array} \right\} \quad \Rightarrow \quad \alpha \cdot \bar{x} + \beta \cdot \bar{y} \in S_1 \cap S_2.$$

2.3 Sum of linear subspaces.

First, note that the union of vector subspaces need not be a vector subspace. For example, consider:

$$V = \mathbb{R}^2; \quad S_1 = \{(x,0) \in \mathbb{R}^2, x \in \mathbb{R}\}; \quad S_2 = \{(0,y) \in \mathbb{R}^2, y \in \mathbb{R}\}.$$

Taking $(1,0) \in S_1 \cup S_2$ and $(0,1) \in S_1 \cup S_2$, we have $(1,0) + (0,1) = (1,1) \notin S_1 \cup S_2$ which implies that the union of S_1 and S_2 is not a vector subspace.

However, given two linear subspaces we can define its sum, which will turn out to be the smallest vector subspace containing the union.

Definition 2.5 Let S_1 and S_2 two vector subspaces of V, we define the sum of S_1 and S_2 as:

 $S_1 + S_2 = \{ \bar{x}_1 + \bar{x}_2 \text{ with } \bar{x}_1 \in S_1 \text{ and } \bar{x}_2 \in S_2 \}$

Proposition 2.6 The sum of two subspaces is a subspace.

Proof: Let $S_1, S_2 \in V$ be two subspaces of V. Let $\bar{x}, \bar{y} \in S_1 + S_2$ and $\alpha, \beta \in \mathbb{K}$. We have:

$$\begin{array}{ll} \bar{x} \in S_1 + S_2 \; \Rightarrow \; \bar{x} = \bar{x}_1 + \bar{x}_2, \text{ with } \bar{x}_1 \in S_1, \bar{x}_2 \in S_2 \\ \bar{y} \in S_1 + S_2 \; \Rightarrow \; \bar{y} = \bar{y}_1 + \bar{y}_2, \text{ with } \bar{y}_1 \in S_1, \bar{y}_2 \in S_2 \end{array}$$

therefore:

$$\alpha \cdot \bar{x} + \beta \cdot \bar{y} = \alpha \cdot (\bar{x}_1 + \bar{x}_2) + \beta \cdot (\bar{y}_1 + \bar{y}_2) = \underbrace{\alpha \cdot \bar{x}_1 + \beta \cdot \bar{y}_1}_{\in S_1} + \underbrace{\alpha \cdot \bar{x}_2 + \beta \cdot \bar{y}_2}_{\in S_2} \in S_1 + S_2.$$

Proposition 2.7 The sum of two linear subspaces is the smallest vector subspace containing the union.

Proof: Let $S_1, S_2 \in V$ be two subspaces of V. First, it is clear that $S_1 \cup S_2 \subset S_1 + S_2$. Now, let S be a subspace containing $S_1 \cup S_2$; let us see that $S_1 + S_2 \subset S$.

$$\bar{x} \in S_1 + S_2 \quad \Rightarrow \quad \bar{x} = \bar{x}_1 + \bar{x}_2 \text{ with } \begin{cases} \bar{x}_1 \in S_1 \subset S_1 \cup S_2 \subset S \\ \bar{x}_2 \in S_2 \subset S_1 \cup S_2 \subset S \end{cases} \quad \Rightarrow \quad \bar{x} = \bar{x}_1 + \bar{x}_2 \in S \end{cases}$$

This concept can be generalized to any finite number of subspaces.

Definition 2.8 Let S_1, S_2, \ldots, S_k be subspaces of V. We define their sum as:

 $S_1 + S_2 + \ldots + S_k = \{ \bar{x}_1 + \bar{x}_2 + \ldots + \bar{x}_k \text{ with } \bar{x}_1 \in S_1, \ \bar{x}_2 \in S_2, \ldots, \ \bar{x}_k \in S_k \}$

2.4 Direct sum.

Definition 2.9 Let S_1, S_2 be two vector subspaces of U. If $S_1 \cap S_2 = \{\overline{0}\}$, then the sum subspace $S_1 + S_2$ is called **direct sum of** S_1 and S_2 and it is denoted by:

 $S_1 \oplus S_2$.

Proposition 2.10 Let S_1, S_2 be two subspaces of U. The sum $S_1 + S_2$ is a direct sum if and only if any element of $S_1 + S_2$ can be uniquely written as a sum of an element of S_1 and an element of S_2 .

Proof: First, suppose the sum is direct, that is $S_1 \cap S_2 = \{\overline{0}\}$. Let us prove the uniqueness of the decomposition. Let $\overline{x} \in S_1 + S_2$. If:

$$\bar{x} = \bar{x}_1 + \bar{x}_2 = \bar{y}_1 + \bar{y}_2$$
 with $\bar{x}_1, \bar{y}_1 \in S_1$ and $\bar{x}_2, \bar{y}_2 \in S_2$

then

 $\bar{x}_1 - \bar{y}_1 = \bar{y}_2 - \bar{x}_2 \in S_1 \cap S_2 \quad \Rightarrow \quad \bar{x}_1 - \bar{y}_1 = \bar{y}_2 - \bar{x}_2 = \bar{0} \quad \Rightarrow \quad \bar{x}_1 = \bar{y}_1, \quad \bar{x}_2 = \bar{y}_2.$

Now, assume the uniqueness of the decomposition and let us see that the sum is direct. We must prove that $S_1 \cap S_2 = \{\overline{0}\}$. Let $\overline{x} \in S_1 \cap S_2$; it can be written as:

 $\bar{x} = \bar{x} + \bar{0}$ with $\bar{x} \in S_1, \bar{0} \in S_2$, and also $\bar{x} = 0 + \bar{x}$ with $\bar{0} \in S_1, \bar{x} \in S_2$.

By the uniqueness of the decomposition we deduce that $\bar{x} = \bar{0}$.

This concept can be generalized to more than two subspaces.

Definition 2.11 Let S_1, S_2, \ldots, S_k linear subspaces of U. If $(S_1 + \ldots + S_i) \cap S_{i+1} = \{0\}$ for any $i, 1 \le i \le k-1$ then the sum subspace $S_1 + S_2 + \ldots + S_k$ is called **direct sum of** S_1, S_2, \ldots, S_k and it is denoted by:

$$S_1 \oplus S_2 \oplus \ldots \oplus S_k.$$

Proposition 2.12 Let S_1, S_2, \ldots, S_k be linear subspaces of U. The sum $S_1 + S_2 + \ldots + S_k$ is a direct sum if and only if any element of $S_1 + S_2 + \ldots + S_k$ can be written uniquely as sum of elements of S_1, S_2, \ldots, S_k .

Proof: Suppose the sum is direct. Fix $\bar{x} \in S_1 + \ldots + S_k$ and suppose that we have two different decompositions of \bar{x} :

$$\bar{x} = \bar{x}_1 + \ldots + \bar{x}_k = \bar{y}_1 + \ldots + \bar{y}_k, \qquad \bar{x}_i, \bar{y}_i \in S_i, \quad i = 1, 2, \ldots, k$$

Then, applying that $(S_1 + \ldots + S_{k-1}) + S_k$ is a direct sum we see that $x_k = y_k$, and:

$$\bar{x}_1 + \ldots + \bar{x}_{k-1} = \bar{y}_1 + \ldots + \bar{y}_{k-1}.$$

Now, we use that $(S_1 + \ldots + S_{k-2}) + S_{k-1}$ is a direct sum and from this $x_{k-1} = y_{k-1}$,

$$\bar{x}_1 + \ldots + \bar{x}_{k-2} = \bar{y}_1 + \ldots + \bar{y}_{k-2}.$$

Repeating the process, we deduce that $x_i = y_i$ for i = 1, 2, ..., k.

Conversely, assume the uniqueness of the decomposition. Let us see that for any i = 2, ..., k, $(S_1 + ... + S_i) + S_{i+1}$ is a direct sum.

Any $\bar{x} \in S_1 + \ldots + S_i$ can be written as sum of elements of S_1, \ldots, S_i . By the hypothesis this decomposition is unique. Applying Proposition 2.10 we deduce that the sum is direct, that is, $(S_1 + \ldots + S_i) \cap S_{i+1} = \{\bar{0}\}$.

2.5 Complementary subspaces.

Definition 2.13 Let S_1, S_2 be two subspaces of V. They are called **complementary** *if*:

 $\begin{array}{rcl} S_1 \cap S_2 & = & \{0\} \\ S_1 + S_2 & = & V \end{array}$

or equivalently:

 $S_1 \oplus S_2 = V.$

If S_1, S_2 are complementary subspaces we know that any $\bar{x} \in V$ can be written uniquely as $\bar{x} = \bar{x}_1 + \bar{x}_2$, with $\bar{x}_1 \in S_1$ and $\bar{x}_2 \in S_2$:

 \bar{x}_1 is called **projection of** \bar{x} onto S_1 along S_2 .

 \bar{x}_2 is called **projection of** \bar{x} onto S_2 along S_1 .

It is interesting to note that beyond the algebraic background this concept is very geometric. An example is represented in the following image. The complementary subspaces are the plane S_1 (in red) and the line S_2 (in blue); any vector \vec{x} can be decomposed as the sum of a pair of vectors \vec{x}_1 and \vec{x}_2 in each of the subspaces.

Geometrically the vector \vec{x}_1 is constructed by taking the line parallel to S_2 through the endpoint of the vector \vec{x} and intersecting it with the plane S_1 . Hence it is called the projection of \bar{x} onto S_1 along S_2 .

Analogously, the vector \vec{x}_2 is constructed by intersecting the plane parallel to S_1 through the endpoint of \vec{x} with the line S_1 .

Based on this decomposition, we can define the following **projection functions**:

Function p_1 is called projection function onto S_1 along S_2 and function p_2 is called projection function onto S_2 along S_1 .

These functions satisfy the following properties:

1. $p_1 + p_2 = Id$. 2. $p_1 \circ p_1 = p_1$ and $p_2 \circ p_2 = p_2$. 3. $p_1 \circ p_2 = p_2 \circ p_1 = 0$.