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4. Systems of linear equations.

1 Definitions and matrix representation.

1.1 Basic definitions.

Definition 1.1 A system of m linear equations of n unknowns x1, . . . , xn with co-
efficients in a field IK is a set of equations of the form:

a11x1 + a12x2 + . . .+ a1nxn = b1
a21x1 + a22x2 + . . .+ a2nxn = b2

...
...

am1x1 + am2x2 + . . .+ amnxn = bm

m equations

where aij , bi ∈ IK.

If all constant terms b1, . . . , bm are zero, the system is said to be homogeneous.

A linear system is said to be consistent if it has a solution, that is, if there are
scalars x1, . . . , xn ∈ IK simultaneously satisfying its m equations. In other case it is
called inconsistent.

When the system is consistent, it can be determined when the solution is unique
or undetermined when there are more than one solution.

1.2 Matrix representation.

Given a linear system, we can write it as a matrix equation :
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn


︸ ︷︷ ︸

A


x1
x2
...
xn


︸ ︷︷ ︸

X

=


b1
b2
...
bm


︸ ︷︷ ︸

B

We call:

- A ∈ Mm×n(IK) coefficient matrix of the system or simply matrix of the
system.

- X ∈Mn×1(IK) matrix (or column vector) of unknowns.

- B ∈Mm×1(IK) matrix (or column vector) of constants.

Moreover we denote by Ā ∈Mm×(n+1)(IK) the matrix obtained by appending the
column vector of constants to the coefficient matrix A; it is called the augmented

matrix of the system:

Ā =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

∣∣∣∣∣∣∣∣
b1
b2
...
bn

 .

2 Existence of solution: Rouché-Fröbenius
Theorem.

Theorem 2.1 (Rouché-Fröbenius Theorem) A linear system of m linear equa-
tions and n unknowns is consistent if and only if the rank of the matrix system is
equal to the rank of the augmented matrix system.

Proof: Consider the matrix expression of the linear system AX = B. The existence
of solution is equivalent to the existence of scalars x1, . . . , xn such that:

n∑
k=1

aikxk = bi for i = 1, . . . ,m.

If we denote the columns of the matrix A by Ai, this relation can be written as

n∑
k=1

xkAk = B.

This means that the vector B is a linear combination of the columns of matrix A.

Therefore, the linear system is consistent if and only if the column B is a linear
combination of the columns of A. Since the rank of a matrix is the number of
linearly independent columns it has (see Theorem 4.2, Chapter 2, Tema III), the
result follows.

3 Equivalent systems and resolution methods.

3.1 Equivalent systems.

Definition 3.1 Two linear systems with n unknowns are said to be equivalent if
they have exactly the same solutions.

Theorem 3.2 Let AX = B and A′X = B′ two linear systems of m equations and
n unknowns. If Ā and Ā′ are row equivalent, then the systems are equivalent.
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Proof: If Ā and Ā′ are row equivalent, there exists a nonsingular matrix P ∈Mm×m
such that

Ā′ = PĀ

adn equivalently

(A′|B′) = P (A|B) ⇐⇒ (A′|B′) = (PA|PB) ⇐⇒ A′ = PA, B′ = PB.

Thus, given a solution X of the first system, that is, a column satisfying AX = B
we have:

A′X = PAX = PB = B′

and therefore X is also a solution of the second system. Conversely, given a solution
X of the second system (A′X = B′) we have:

AX = P−1A′X = P−1B′ = B

We see that X is a solution of the first system. We conclude that both systems have
the same solutions.

Remark 3.3 Given a linear system of equations AX = B, by the previous theo-
rem we know that by performing elementary row operations on the equations on the
augmented matrix Ā, we obtain a new linear system with the same solutions.

It is immediate that doing elementary row operations to Ā is equivalent to doing
operations to the equations of the system. That is, carrying out any of the following
transformations on the equations of a linear system provides an equivalent linear
system (with an identical set of solutions):

- Multiply an equation by a non-zero number.

- Swap the positions of two equations.

- Add to an equation a multiple of a different one.

3.2 Gaussian elimination method.

3.2.1 Description of the method.

The idea of the Gaussian elimination method is to apply row elementary operations
with the aim to obtain an equivalent system which is simpler than the original one.
Specifically, we set to find an echelon form of the matrix system with 1’s as the
leading elements of all nonzero rows.

The steps to solve a linear system by Gaussian elimination method are:

1. We consider the augmented matrix A of the system.

2. We reduce this matrix by applying elementary row operations until it becomes
a row echelon matrix:

(a) If the matrix is composed entirely of zeros, then we are done.

(b) Otherwise, starting from the left, we look for the first column with some
nonzero element a. We move the row in which it appears to the first
position.

(c) We divide the first row by a so that the leading element of the first row is
1.

(d) Using the first row and applying elementary row operations, we get zeros
below the leading element of the first row.

(e) We repeat the process on the submatrix formed by the remaining rows.
We are done when we have simplified all nonzero rows.

3. We have a new linear system equivalent to the initial one but now the augmented
matrix A

′
is a row echelon matrix.

4. If there is any row all whose elements are zeros except for the last one (which
corresponds to the constant term) the system is inconsistent.

5. Otherwise, the system is consistent. We move to the right-hand side of each
equation all the terms from columns with no leading entries; we will then have
a system with rank(A) unknowns and n − rank(A) parameters. This system
can be easily solved by succesive substitution, starting with the last equation
and ending with the first.
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3.2.2 Example of Gaussian elimination.

Suppose we want to solve the linear system

3y −z = 6
x +y +z +t = 5

2x −y +3z +2t = 4

The augmented matrix of the system is

Ā =

(
0 3 −1 0
1 1 1 1
2 −1 3 2

∣∣∣∣∣ 6
5
4

)

We apply row elementary operations until we obtain a row echelon matrix:

Ā
H12−→

(
1 1 1 1
0 3 −1 0
2 −1 3 2

∣∣∣∣∣ 5
6
4

)
H31(−2)−→

(
1 1 1 1
0 3 −1 0
0 −3 1 0

∣∣∣∣∣ 5
6
−6

)
H32(1)−→

H32(1)−→

(
1 1 1 1
0 3 −1 0
0 0 0 0

∣∣∣∣∣ 5
6
0

)
H2(1/3)−→

(
1 1 1 1
0 1 −1/3 0
0 0 0 0

∣∣∣∣∣ 5
2
0

)

We have obtained the equivalent linear system

x +y +z +t = 5

y −1

3
z = 2

No row has only the constant term different from zero, therefore the system is
consistent. We move to the right-hand side of each equation all the terms from
columns with no leading elements

x +y = 5− z − t
y = 2 +

1

3
z

We will obtain the solution as a function of two parameters (the linear system is
consistent but undetermined).

From the second equation:

y = 2 +
1

3
z.

and substituting in the first:

x = 5− z − t− y = 5− z − t− 2− 1

3
z = 3− 4

3
z − t.

3.3 Cramer’s rule.

Theorem 3.4 (Cramer’s rule) Given a consistent and determined linear system
AX = B of n equations and n unknowns, its solution can be obtained as

xi =
det(Mi)

det(A)
for i = 1, . . . , n,

where Mi is the matrix obtained by replacing the i-th column of A by the constant
vector B.

Proof: Since the system is consistent and determined, rank(A) = n and thus A is
invertible. Hence

AX = B ⇒ A−1AX = A−1B ⇒ X = A−1B.

Now, let us recall that A−1 can be obtanied as:

A−1 =
adj(A)

det(A)
.

Then:

xi =

n∑
k=1

(A−1)ikBk =
1

det(A)

n∑
k=1

AkiBi

But this is the cofactor expansion of the determinant along the i-th column of the
matrix Mi.

Corollary 3.5 Let AX = B be a consistent linear system with m equations and n
unknowns; then the set of solutions depends on n− rank(A) parameters.

Proof: By the Rouché-Fröbenius theorem, since it is a consistent system, rank(Ā) =
rank(A). This means that there are rank(A) independent equations. Each of the
remaining ones can be expressed as a linear combination of them. Therefore by
doing elementary operations we can eliminate them and obtain an equivalent system
A′X = B′ with exactly rank(A) = rank(A′) equations.

Now, by the definition of rank, there is a minor of A′ with nonzero determinant;
this minor is obtained by choosing rank(A′) columns of the matrix. Each column
corresponds to the coefficients multiplying one of the unknowns xi. Moving the
remaining unknowns to the right-hand member and regarding them as parameters,
we have a consistent determined linear system of rank(A′) equations. This system
can be solved by the Cramer’s rule.
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4 Discussion of a system of linear equations.

We summarize the results about existence and uniqueness of solution of a linear
system in the following table:

Given a linear system of m equations and n unknowns

a11x1 + a12x2 + . . .+ a1nxn = b1
a21x1 + a22x2 + . . .+ a2nxn = b2

...
...

am1x1 + am2x2 + . . .+ amnxn = bm

m equations

the following holds:

1. If rank(A) = rank(Ā) the system is consistent. Moreover:

(a) if rank(A) = rank(Ā) = n, the system is determined.

(b) if rank(A) = rank(Ā) < n, the system is undetermined and the
solution depends on n− rank(A) parameters.

2. If rank(A) < rank(Ā) then the system is inconsistent.
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