2. Determinants.

1 Basic notions about permutations.

Definition 1.1 Given a natural number n the set of permutations of n elements is the set of possible rearrangements of the integer numbers $1,2, \ldots, n$. It is denoted by Perm (n).

The elements of $\operatorname{Perm}(n)$ are called permutations.
From this, an element of $\operatorname{Perm}(n)$ corresponds to a bijective map:

$$
\begin{array}{clcc}
\sigma:\{1, \ldots, n\} & \longrightarrow & \{1, \ldots, n\} \\
1 & \longrightarrow & \sigma(1) \\
\vdots & & \vdots \\
n & \longrightarrow & \sigma(n)
\end{array}
$$

$\sigma(i)$ indicates which number we place at the i th position.
We know that n elements can be ordered in $n!$ different ways, so the set $\operatorname{Perm}(n)$ has n ! elements.

Given a permutation σ we can consider the inverse permutation σ^{-1} which corresponds to the inverse funcion of σ.

Definition 1.2 A transposition is a permutation that keeps all the elements in the same order except that two of them are swapped.

It can be proved that every permutation may be represented as a composition of transpositions. This allows us to define the following:

Definition 1.3 Given a permutation σ we call signature of σ and denote by $\epsilon(\sigma)$ the number:

$$
\epsilon(\sigma)=(-1)^{k}
$$

where k is the number of transpositions in the decomposition of σ.
A permutation can be decomposed into transpositions in different ways. However, the parity of the number of transpositions in each decomposition is the same. Thus, if a permutation is a composition of an even number of transpositions, the signature will be +1 ; on the contrary, if it is a composition of an odd number of transpositions, the signature will be -1 .

On the other hand, given a decomposition of a permutation into transpositions, it is clear that the inverse permutation σ^{-1} is obtained by composing the inverse of the transpositions. From this, the signature of a permutation and the signature of its inverse coincide:

$$
\epsilon(\sigma)=\epsilon\left(\sigma^{-1}\right)
$$

2 Determinant of a square matrix.

2.1 Definition.

Given a square matrix A, we will denote its i th row by A_{i} :

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right) ; \quad A_{i}=\left(a_{i 1}, a_{i 2}, \ldots, a_{i n}\right)
$$

Definition 2.1 The determinant of a square matrix A is a map from the set of square matrices over the field $\mathbb{I K}$:

$$
\mathcal{M}_{n \times n} \longrightarrow \mathbb{K} ; \quad|A|=\operatorname{det}\left(A_{1}, A_{2}, \ldots, A_{n}\right)=\left|\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right|
$$

satisfying the following properties for any $i, j \in\{1,2, \ldots, n\}$:

1. It is multilinear:

$$
\operatorname{det}\left(A_{1}, \ldots, A_{i}+A_{i}^{\prime}, \ldots A_{n}\right)=\operatorname{det}\left(A_{1}, \ldots, A_{i}, \ldots A_{n}\right)+\operatorname{det}\left(A_{1}, \ldots, A_{i}^{\prime}, \ldots A_{n}\right)
$$

$$
\operatorname{det}\left(A_{1}, \ldots, \alpha A_{i}, \ldots A_{n}\right)=\alpha \cdot \operatorname{det}\left(A_{1}, \ldots, A_{i}, \ldots A_{n}\right), \text { for any } \alpha \in \mathbb{K}
$$

2. It is antisymmetric:

$$
\operatorname{det}\left(A_{1}, \ldots, A_{i}, \ldots, A_{j}, \ldots, A_{n}\right)=-\operatorname{det}\left(A_{1}, \ldots, A_{j}, \ldots, A_{i}, \ldots, A_{n}\right)
$$

3. $\left|I_{n}\right|=1$.

2.2 Properties.

1. The determinant of any matrix with two equal rows is 0 :

$$
\operatorname{det}\left(A_{1}, \ldots, A_{i}, \ldots, A_{i}, \ldots, A_{n}\right)=0
$$

Proof: As a consequence of the antisymmetry condition:

$$
\operatorname{det}\left(A_{1}, \ldots, A_{i}, \ldots, A_{i}, \ldots, A_{n}\right)=-\operatorname{det}\left(A_{1}, \ldots, A_{i}, \ldots, A_{i}, \ldots, A_{n}\right)
$$

so:

$$
2 \operatorname{det}\left(A_{1}, \ldots, A_{i}, \ldots, A_{i}, \ldots, A_{n}\right)=0 .
$$

2. The determinant of any matrix with a null row is 0 :

$$
\operatorname{det}\left(A_{1}, \ldots, 0, \ldots, A_{n}\right)=0
$$

Proof. Since the determinant map is multilinear:

$$
\operatorname{det}\left(A_{1}, \ldots, 0, \ldots, A_{n}\right)=0 \cdot \operatorname{det}\left(A_{1}, \ldots, 0, \ldots, A_{n}\right)=0
$$

3. If one of the rows of a matrix is multiplied by a scalar and then added to another row of the same matrix, the resulting matrix has the same determinant as the original one:

$$
\operatorname{det}\left(A_{1}, \ldots, A_{i}, \ldots, A_{j}+\lambda \cdot A_{i}, \ldots, A_{n}\right)=\operatorname{det}\left(A_{1}, \ldots, A_{i}, \ldots, A_{j}, \ldots, A_{n}\right)
$$

Proof: We use multilinearity of the determinant and the first property:

$$
\begin{aligned}
& \operatorname{det}\left(A_{1}, \ldots, A_{i}, \ldots, A_{j}+\lambda \cdot A_{i}, \ldots, A_{n}\right)= \\
& =\operatorname{det}\left(A_{1}, \ldots, A_{i}, \ldots, A_{j}, \ldots, A_{n}\right)+\lambda \operatorname{det}\left(A_{1}, \ldots, A_{i}, \ldots, A_{i}, \ldots, A_{n}\right)= \\
& =\operatorname{det}\left(A_{1}, \ldots, A_{i}, \ldots, A_{j}, \ldots, A_{n}\right)
\end{aligned}
$$

2.3 Computation of the determinant

Let A be an $n \times n$ matrix.

We denote by E_{i} the row with a 1 at the i th position and 0 's at all the remaining ones.

$$
E_{i}=(0, \ldots, 0, \underbrace{1}_{i}, 0, \ldots, 0) .
$$

With this notation:

$$
A_{i}=\left(a_{i 1}, a_{i 2}, \ldots, a_{i n}\right)=\sum_{j=1}^{n} a_{i j} E_{j}
$$

Let us compute the determinant of A :

$$
\operatorname{det}(A)=\operatorname{det}\left(A_{1}, A_{2}, \ldots, A_{n}\right)=\operatorname{det}\left(\sum_{i_{1}=1}^{n} a_{1 i_{1}} E_{i_{1}}, \sum_{i_{2}=1}^{n} a_{2 i_{2}} E_{i_{2}}, \ldots, \sum_{i_{n}=1}^{n} a_{n i_{n}} E_{i_{n}}\right)
$$

Applying the multilinearity of the determinant, we obtain:

$$
\operatorname{det}(A)=\sum_{i_{1}, i_{2}, \ldots, i_{n}=1}^{n} a_{1 i_{1}} a_{2 i_{2}} \ldots a_{n i_{n}} \cdot \operatorname{det}\left(E_{i 1}, E_{i 2}, \ldots, E_{i n}\right)
$$

When two repeated rows appear in the expression $\operatorname{det}\left(E_{i 1}, E_{i 2}, \ldots, E_{i n}\right)$ the corresponding determinant is zero. In other case, we can rearrange the rows as $\operatorname{det}\left(E_{1}, E_{2}, \ldots, E_{n}\right)$. For each change of position of two rows there is a change of sign. As a consequence of this and with the notation described in the preliminary section of the chapter, the formula of the determinant is:

$$
\operatorname{det}(A)=\sum_{\sigma \in \operatorname{Perm}(n)} \epsilon(\sigma) a_{1 \sigma(1)} a_{2 \sigma(2)} \ldots a_{n \sigma(n)}
$$

2.4 Determinant of the transpose of a matrix.

Theorem 2.2 If A is any $n \times n$ matrix

$$
\operatorname{det}(A)=\operatorname{det}\left(A^{t}\right)
$$

Proof: We will use the formula obtained in the previous section:

$$
\begin{aligned}
\left|A^{t}\right| & =\sum_{\sigma \in \operatorname{Perm}(n)} \epsilon(\sigma)\left(A^{t}\right)_{1 \sigma(1)}\left(A^{t}\right)_{2 \sigma(2)} \ldots\left(A^{t}\right)_{n \sigma(n)}= \\
& =\sum_{\sigma \in \operatorname{Perm}(n)} \epsilon(\sigma) a_{\sigma(1) 1} a_{\sigma(2) 2} \ldots a_{\sigma(n) n} .
\end{aligned}
$$

We now rewrite each monomial above by using the inverse permutation of each σ. Recall that the signature of a permutation and the signature of its inverse coincide. From this:

$$
\left|A^{t}\right|=\sum_{\sigma \in \operatorname{Perm}(n)} \epsilon\left(\sigma^{-1}\right) a_{1 \sigma^{-1}(1)} a_{2 \sigma^{-1}(2)} \ldots a_{n \sigma^{-1}(n)}
$$

Finally, in the above summation σ runs through all the possible permutations of n elements, so σ^{-1} also runs through all the possible permutations of n elements. We obtain:

$$
\operatorname{det}\left(A^{t}\right)=\sum_{\rho \in \operatorname{Perm}(n)} \epsilon(\rho) a_{1 \rho(1)} a_{2 \rho(2)} \ldots a_{n \rho(n)}=\operatorname{det}(A)
$$

The main consequence of this theorem is:

> Any property of the determinant which depends on the rows of the matrix is also true for columns.

2.5 Determinant of the product of two matrices.

Theorem 2.3 Let A, B be two $n \times n$ matrices. Then

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

Proof: Denote by $C=A B$ the product matrix of A and B. We know that:

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}, \quad \text { and from this } \quad C_{i}=\sum_{k=1}^{n} a_{i k} B_{k}
$$

Then:

$$
\begin{aligned}
|C| & =\operatorname{det}\left(C_{1}, C_{2}, \ldots, C_{n}\right) \\
& =\operatorname{det}\left(\sum_{k_{1}=1}^{n} a_{1 k_{1}} B_{k_{1}}, \sum_{k_{2}=1}^{n} a_{1 k_{2}} B_{k_{2}}, \ldots, \sum_{k_{n}=1}^{n} a_{1 k_{n}} B_{k_{n}}\right)= \\
& =\sum_{k_{1}, k_{2}, \ldots, k_{n}=1}^{n} a_{1 k_{1}} a_{1 k_{2}} \ldots a_{1 k_{n}} \operatorname{det}\left(B_{k_{1}}, B_{k_{2}}, \ldots, B_{k_{n}}\right)
\end{aligned}
$$

Whenever $k_{i}=k_{j}$ for some i and j, the determinant $\operatorname{det}\left(B_{k_{1}}, B_{k_{2}}, \ldots, B_{k_{n}}\right)$ is zero. Thus, we consider only the terms where the indices k_{1}, \ldots, k_{n} take all possible values between 1 and n. That is, these indices define a permutation. Therefore the previous expression can be written as:

$$
|C|=\sum_{\sigma \in \operatorname{Perm}(n)} a_{1 \sigma(1)} a_{2 \sigma(2)} \ldots a_{n \sigma(n)} \operatorname{det}\left(B_{\sigma(1)}, B_{\sigma(2)}, \ldots, B_{\sigma(n)}\right)
$$

We can rearrange the rows $B_{\sigma(1)}, B_{\sigma(2)}, \ldots, B_{\sigma(n)}$ as B_{1}, \ldots, B_{n}. For each change os position of two rows there is a change of sign. We obtain:

$$
|C|=\sum_{\sigma \in \operatorname{Perm}(n)} \epsilon(\sigma) a_{1 \sigma(1)} a_{2 \sigma(2)} \ldots a_{n \sigma(n)} \operatorname{det}\left(B_{1}, B_{2}, \ldots, B_{n}\right)=\operatorname{det}(A) \operatorname{det}(B)
$$

3 Cofactor expansion of the determinant.

3.1 Minors of a matrix.

Definition 3.1 A minor of order r of a matrix A is the determinant of some $r \times r$ matrix, obtained from A by removing some of its rows and columns:

$$
A\binom{i_{1} i_{2} \ldots i_{r}}{j_{1} j_{2} \ldots j_{r}}=\left|\begin{array}{cccc}
a_{i_{1} j_{1}} & a_{i_{1} j_{2}} & \ldots & a_{i_{1} j_{r}} \\
a_{i_{2} j_{1}} & a_{i_{2} j_{2}} & \ldots & a_{i_{2} j_{r}} \\
\vdots & \vdots & \ddots & \vdots \\
a_{i_{r} j_{1}} & a_{i_{r} j_{2}} & \ldots & a_{i_{r} j_{r}}
\end{array}\right|
$$

with $i_{1}<i_{2}<\ldots<i_{r}$ and $j_{1}<j_{2}<\ldots<j_{r}$.

3.2 Cofactors of a matrix.

Definition 3.2 Given a square matrix $A \in \mathcal{M}_{n \times n}$ the cofactor $A_{i j}$ is the minor obtained by suppressing the i-th row and the j-th column, multiplied by the factor $(-1)^{i+j}$..

The following properties hold:

Proposition 3.3 Given a square matrix $A \in \mathcal{M}_{n \times n}$:

$$
A_{11}=\left|\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right|
$$

Proof: Let us denote by B the matrix:

$$
B=\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right)
$$

Applying the formula for the determinant, we have:

$$
|B|=\sum_{\sigma \in \operatorname{Perm}(n)} \epsilon(\sigma) b_{1 \sigma(1)} b_{2 \sigma(2)} \ldots b_{n \sigma(n)}
$$

But $b_{i j}=0$ when $i=1$ and $j>1$. Moreover $b_{11}=1$. If σ is a permutation that changes the position of $1(\sigma(1) \neq 1)$ then $b_{1 \sigma(1)}=0$ and the corresponding term of the sum is zero. From this, we can consider only permutations that leave 1 fixed. These correspond to permutations on the set $\{2, \ldots, n\}$, so:

$$
\begin{aligned}
|B| & =\sum_{\sigma \in \operatorname{Perm}(2, \ldots, n)} \epsilon(\sigma) b_{2 \sigma(2)} b_{3 \sigma(3)} \ldots b_{n \sigma(n)} \\
& =\sum_{\sigma \in \operatorname{Perm}(2, \ldots, n)} \epsilon(\sigma) a_{2 \sigma(2)} a_{3 \sigma(3)} \ldots a_{n \sigma(n)}=A_{11} .
\end{aligned}
$$

Corollary 3.4 Given a square matrix $A \in \mathcal{M}_{n \times n}$:

$$
A_{i j}=\left|\begin{array}{ccccc}
a_{11} & \ldots & a_{1 j} & \ldots & a_{1 n} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
a_{i-11} & \ldots & a_{i-1 j} & \ldots & a_{i-1 n} \\
0 & \ldots & 1 & \ldots & 0 \\
a_{i+11} & \ldots & a_{i+1 j} & \ldots & a_{i+1 n} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
a_{n 1} & \ldots & a_{n j} & \ldots & a_{n n}
\end{array}\right|
$$

Proof: It is sufficient to apply the previous result. We can move the i-th row and the j-th column to the position 1,1 . We make $i-1, j-1$ sign changes, so we have to multiply by the factor:

$$
(-1)^{i-1+j-1}=(-1)^{i+j}
$$

3.3 Expansion of the determinant along a row or a column.

Let us see how to calculate the determinant of a square matrix A by expanding along the i th row:

$$
\begin{aligned}
|A| & =\operatorname{det}\left(A_{1}, \ldots, A_{i}, \ldots, A_{n}\right)= \\
& =\operatorname{det}\left(A_{1}, \ldots, a_{i 1} E_{1} \ldots+a_{i n} E_{n}, \ldots, A_{n}\right)= \\
& =a_{i 1} \operatorname{det}\left(A_{1}, \ldots, E_{1}, \ldots, A_{n}\right)+\ldots+a_{i n} \operatorname{det}\left(A_{1}, \ldots, E_{n}, \ldots, A_{n}\right) \\
& =a_{i 1} A_{i 1}+\ldots+a_{i n} A_{i n}
\end{aligned}
$$

We deduce the following formula:

$$
|A|=\sum_{j=1}^{n} a_{i j} A_{i j}
$$

Analogously the formula to calculate the determinant expanding along the j-th column is:

$$
|A|=\sum_{i=1}^{n} a_{i j} A_{i j}
$$

The importance of both formulas is that they allow us to reduce the calculation of an $n \times n$ determinant to that of an $(n-1) \times(n-1)$ one. We can successively apply this reduction of the dimension of the problem as many times as we wish.

4 Rank of a matrix.

Definition 4.1 Given a square matrix A we define the $\mathbf{r a n k}$ of A as the order of a highest-order nonvanishing minor of the matrix.

As a consequence of the properties of the determinant we have:

1. The rank of a matrix coincides with the rank of its transpose.
2. Elementary row or column operations does not change the rank.

5 Inverse of a matrix.

The use of determinants provides a method to calculate the inverse of a square matrix A. Note that a necessary condition for a square matrix A to have an inverse is that its determinant if not null:

$$
A \cdot A^{-1}=I d \Rightarrow \operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)=1 \Rightarrow \operatorname{det}(A) \neq 0 \text { and } \operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}
$$

We introduce the following definition:

Definition 5.1 Given a square matrix A we call adjoint matrix of A the transpose of the matrix of cofactors:

$$
(\operatorname{adj} A)=\left(\begin{array}{cccc}
A_{11} & A_{21} & \ldots & A_{n 1} \\
A_{12} & A_{22} & \ldots & A_{n 2} \\
\vdots & \vdots & \ddots & \vdots \\
A_{n 1} & A_{n 2} & \ldots & A_{n n}
\end{array}\right)
$$

Let us now calculate the product:

$$
B=A \cdot(\operatorname{adj} A)
$$

We have:

$$
b_{i j}=\sum_{k=1}^{n} a_{i k}(\operatorname{adj} A)_{k j}=\sum_{k=1}^{n} a_{i k} A_{j k} .
$$

If $i=j$:

$$
b_{i i}=\sum_{k=1}^{n} a_{i k} A_{i k}=|A| .
$$

If $i \neq j$,

$$
b_{i j}=\sum_{k=1}^{n} a_{i k} A_{j k}=\sum_{k=1}^{n} a_{i k} C_{i k}=|C|,
$$

where C is matrix equal to A, except in the j-th row that is equal to the i-th. From this $|C|=0$ and it remains:

$$
A \cdot(\operatorname{adj} A)=|A| I d
$$

On the other hand:

$$
(\operatorname{adj} A) \cdot A=\left(A^{t} \cdot(\operatorname{adj} A)^{t}\right)^{t}=\left(A^{t} \cdot\left(\operatorname{adj} A^{t}\right)\right)^{t}=\left|A^{t}\right| I d^{t}=|A| I d
$$

Threfore if $|A| \neq 0$:

$$
\left.\begin{array}{c}
A \cdot \frac{1}{|A|}(\operatorname{adj} A)=I d \\
\frac{1}{|A|}(\operatorname{adj} A) \cdot A=I d
\end{array}\right\} \Rightarrow A^{-1}=\frac{1}{|A|}(\operatorname{adj} A)
$$

We have proved the following theorem:
Theorem 5.2 Let A be an n-dimensional square matrix. A is invertible if and only if its determinant is nonzero. In this case:

$$
A^{-1}=\frac{1}{|A|}(\operatorname{adj} A) \quad \text { and } \quad\left|A^{-1}\right|=\frac{1}{|A|}
$$

