2. Determinants.

1 Basic notions about permutations.

Definition 1.1 Given a natural number n the set of permutations of n elements is the set of possible rearrangements of the integer numbers 1, 2, ..., n. It is denoted by Perm(n).

The elements of Perm(n) are called **permutations.**

From this, an element of Perm(n) corresponds to a bijective map:

 $\sigma(i)$ indicates which number we place at the *i*th position.

We know that n elements can be ordered in n! different ways, so the set Perm(n) has n! elements.

Given a permutation σ we can consider the **inverse permutation** σ^{-1} which corresponds to the inverse function of σ .

Definition 1.2 A **transposition** is a permutation that keeps all the elements in the same order except that two of them are swapped.

It can be proved that every permutation may be represented as a composition of transpositions. This allows us to define the following:

Definition 1.3 Given a permutation σ we call signature of σ and denote by $\epsilon(\sigma)$ the number:

$$(\sigma) = (-1)^k$$

where k is the number of transpositions in the decomposition of σ .

A permutation can be decomposed into transpositions in different ways. However, the parity of the number of transpositions in each decomposition is the same. Thus, if a permutation is a composition of an even number of transpositions, the signature will be +1; on the contrary, if it is a composition of an odd number of transpositions, the signature will be -1.

On the other hand, given a decomposition of a permutation into transpositions, it is clear that the inverse permutation σ^{-1} is obtained by composing the inverse of the transpositions. From this, the signature of a permutation and the signature of its inverse coincide:

$$\epsilon(\sigma) = \epsilon(\sigma^{-1})$$

2 Determinant of a square matrix.

2.1 Definition.

Given a square matrix A, we will denote its *i*th row by A_i :

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}; \qquad A_i = (a_{i1}, a_{i2}, \dots, a_{in}).$$

Definition 2.1 The determinant of a square matrix A is a map from the set of square matrices over the field \mathbb{K} :

$$\mathcal{M}_{n \times n} \longrightarrow \mathbb{K}; \quad |A| = det(A_1, A_2, \dots, A_n) = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}$$

satisfying the following properties for any $i, j \in \{1, 2, ..., n\}$:

 $1. \ It \ is \ multilinear:$

 $det(A_1,\ldots,A_i+A'_i,\ldots,A_n)=det(A_1,\ldots,A_i,\ldots,A_n)+det(A_1,\ldots,A'_i,\ldots,A_n).$

$$det(A_1,\ldots,\alpha A_i,\ldots A_n) = \alpha \cdot det(A_1,\ldots,A_i,\ldots A_n), \text{ for any } \alpha \in \mathbb{K}.$$

2. It is antisymmetric:

$$det(A_1,\ldots,A_i,\ldots,A_j,\ldots,A_n) = -det(A_1,\ldots,A_j,\ldots,A_i,\ldots,A_n).$$

3. $|I_n| = 1$.

2.2 Properties.

1. The determinant of any matrix with two equal rows is 0:

$$det(A_1,\ldots,A_i,\ldots,A_i,\ldots,A_n)=0.$$

Proof: As a consequence of the antisymmetry condition:

$$det(A_1,\ldots,A_i,\ldots,A_i,\ldots,A_n) = -det(A_1,\ldots,A_i,\ldots,A_i,\ldots,A_n)$$

so:

$$2det(A_1,\ldots,A_i,\ldots,A_i,\ldots,A_n)=0.$$

2. The determinant of any matrix with a null row is 0:

$$det(A_1,\ldots,0,\ldots,A_n)=0.$$

Proof. Since the determinant map is multilinear:

$$det(A_1, \ldots, 0, \ldots, A_n) = 0 \cdot det(A_1, \ldots, 0, \ldots, A_n) = 0.$$

3. If one of the rows of a matrix is multiplied by a scalar and then added to another row of the same matrix, the resulting matrix has the same determinant as the original one:

$$det(A_1,\ldots,A_i,\ldots,A_j+\lambda\cdot A_i,\ldots,A_n)=det(A_1,\ldots,A_i,\ldots,A_j,\ldots,A_n).$$

Proof: We use multilinearity of the determinant and the first property:

$$det(A_1, \dots, A_i, \dots, A_j + \lambda \cdot A_i, \dots, A_n) =$$

= $det(A_1, \dots, A_i, \dots, A_j, \dots, A_n) + \lambda det(A_1, \dots, A_i, \dots, A_i, \dots, A_n) =$
= $det(A_1, \dots, A_i, \dots, A_j, \dots, A_n).$

2.3 Computation of the determinant

Let A be an $n \times n$ matrix.

We denote by E_i the row with a 1 at the *i*th position and 0's at all the remaining ones.

$$E_i = (0, \dots, 0, \underbrace{1}_{i}, 0, \dots, 0).$$

With this notation:

$$A_i = (a_{i1}, a_{i2}, \dots, a_{in}) = \sum_{j=1}^n a_{ij} E_j$$

Let us compute the determinant of A:

$$det(A) = det(A_1, A_2, \dots, A_n) = det(\sum_{i_1=1}^n a_{1i_1} E_{i_1}, \sum_{i_2=1}^n a_{2i_2} E_{i_2}, \dots, \sum_{i_n=1}^n a_{ni_n} E_{i_n})$$

Applying the multilinearity of the determinant, we obtain:

$$det(A) = \sum_{i_1, i_2, \dots, i_n = 1}^n a_{1i_1} a_{2i_2} \dots a_{ni_n} \cdot det(E_{i_1}, E_{i_2}, \dots, E_{i_n}).$$

When two repeated rows appear in the expression $det(E_{i1}, E_{i2}, \ldots, E_{in})$ the corresponding determinant is zero. In other case, we can rearrange the rows as $det(E_1, E_2, \ldots, E_n)$. For each change of position of two rows there is a change of sign. As a consequence of this and with the notation described in the preliminary section of the chapter, the formula of the determinant is:

$$det(A) = \sum_{\sigma \in Perm(n)} \epsilon(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)}$$

2.4 Determinant of the transpose of a matrix.

Theorem 2.2 If A is any $n \times n$ matrix

$$det(A) = det(A^t)$$

Proof: We will use the formula obtained in the previous section:

$$\begin{aligned} A^{t}| &= \sum_{\sigma \in Perm(n)} \epsilon(\sigma) (A^{t})_{1\sigma(1)} (A^{t})_{2\sigma(2)} \dots (A^{t})_{n\sigma(n)} = \\ &= \sum_{\sigma \in Perm(n)} \epsilon(\sigma) a_{\sigma(1)1} a_{\sigma(2)2} \dots a_{\sigma(n)n}. \end{aligned}$$

We now rewrite each monomial above by using the inverse permutation of each σ . Recall that the signature of a permutation and the signature of its inverse coincide. From this:

$$|A^{t}| = \sum_{\sigma \in Perm(n)} \epsilon(\sigma^{-1}) a_{1\sigma^{-1}(1)} a_{2\sigma^{-1}(2)} \dots a_{n\sigma^{-1}(n)}.$$

Finally, in the above summation σ runs through all the possible permutations of n elements, so σ^{-1} also runs through all the possible permutations of n elements. We obtain:

$$det(A^t) = \sum_{\rho \in Perm(n)} \epsilon(\rho) a_{1\rho(1)} a_{2\rho(2)} \dots a_{n\rho(n)} = det(A).$$

The main consequence of this theorem is:

Any property of the determinant which depends on the rows of the matrix is also true for columns.

2.5 Determinant of the product of two matrices.

Theorem 2.3 Let A, B be two $n \times n$ matrices. Then

$$det(AB) = det(A)det(B).$$

Proof: Denote by C = AB the product matrix of A and B. We know that:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$
, and from this $C_i = \sum_{k=1}^{n} a_{ik} B_k$

Then:

$$\begin{aligned} |C| &= det(C_1, C_2, \dots, C_n) \\ &= det(\sum_{k_1=1}^n a_{1k_1} B_{k_1}, \sum_{k_2=1}^n a_{1k_2} B_{k_2}, \dots, \sum_{k_n=1}^n a_{1k_n} B_{k_n}) = \\ &= \sum_{k_1, k_2, \dots, k_n=1}^n a_{1k_1} a_{1k_2} \dots a_{1k_n} det(B_{k_1}, B_{k_2}, \dots, B_{k_n}). \end{aligned}$$

Whenever $k_i = k_j$ for some *i* and *j*, the determinant $det(B_{k_1}, B_{k_2}, \ldots, B_{k_n})$ is zero. Thus, we consider only the terms where the indices k_1, \ldots, k_n take all possible values between 1 and *n*. That is, these indices define a permutation. Therefore the previous expression can be written as:

$$|C| = \sum_{\sigma \in Perm(n)} a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)} det(B_{\sigma(1)}, B_{\sigma(2)}, \dots, B_{\sigma(n)})$$

We can rearrange the rows $B_{\sigma(1)}, B_{\sigma(2)}, \ldots, B_{\sigma(n)}$ as B_1, \ldots, B_n . For each change os position of two rows there is a change of sign. We obtain:

$$|C| = \sum_{\sigma \in Perm(n)} \epsilon(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)} det(B_1, B_2, \dots, B_n) = det(A) det(B).$$

3 Cofactor expansion of the determinant.

3.1 Minors of a matrix.

Definition 3.1 A minor of order r of a matrix A is the determinant of some $r \times r$ matrix, obtained from A by removing some of its rows and columns:

$$A\left(\begin{array}{cc} i_{1}i_{2}\dots i_{r}\\ j_{1}j_{2}\dots j_{r}\end{array}\right) = \begin{vmatrix} a_{i_{1}j_{1}} & a_{i_{1}j_{2}} & \dots & a_{i_{1}j_{r}}\\ a_{i_{2}j_{1}} & a_{i_{2}j_{2}} & \dots & a_{i_{2}j_{r}}\\ \vdots & \vdots & \ddots & \vdots\\ a_{i_{r}j_{1}} & a_{i_{r}j_{2}} & \dots & a_{i_{r}j_{r}} \end{vmatrix}$$

with $i_1 < i_2 < \ldots < i_r$ and $j_1 < j_2 < \ldots < j_r$.

3.2 Cofactors of a matrix.

Definition 3.2 Given a square matrix $A \in \mathcal{M}_{n \times n}$ the cofactor A_{ij} is the minor obtained by suppressing the *i*-th row and the *j*-th column, multiplied by the factor $(-1)^{i+j}$.

The following properties hold:

Proposition 3.3 Given a square matrix $A \in \mathcal{M}_{n \times n}$:

$$A_{11} = \begin{vmatrix} 1 & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}$$

Proof: Let us denote by *B* the matrix:

$$B = \begin{pmatrix} 1 & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

Applying the formula for the determinant, we have:

$$|B| = \sum_{\sigma \in Perm(n)} \epsilon(\sigma) b_{1\sigma(1)} b_{2\sigma(2)} \dots b_{n\sigma(n)}$$

But $b_{ij} = 0$ when i = 1 and j > 1. Moreover $b_{11} = 1$. If σ is a permutation that changes the position of 1 ($\sigma(1) \neq 1$) then $b_{1\sigma(1)} = 0$ and the corresponding term of the sum is zero. From this, we can consider only permutations that leave 1 fixed. These correspond to permutations on the set $\{2, \ldots, n\}$, so:

$$\begin{aligned} |B| &= \sum_{\sigma \in Perm(2,...,n)} \epsilon(\sigma) b_{2\sigma(2)} b_{3\sigma(3)} \dots b_{n\sigma(n)} \\ &= \sum_{\sigma \in Perm(2,...,n)} \epsilon(\sigma) a_{2\sigma(2)} a_{3\sigma(3)} \dots a_{n\sigma(n)} = A_{11}. \end{aligned}$$

Corollary 3.4 Given a square matrix $A \in \mathcal{M}_{n \times n}$:

	a_{11}		a_{1j}		a_{1n}
	÷	·	÷	·	:
	$a_{i-11} \\ 0$		a_{i-1j}		a_{i-1n}
$A_{ij} =$			1		0
	a_{i+11}		a_{i+1j}	• • •	$a_{i+1 n}$
	÷	·	÷	·	:
	a_{n1}	•••	a_{nj}		a_{nn}

Proof: It is sufficient to apply the previous result. We can move the *i*-th row and the *j*-th column to the position 1, 1. We make i - 1, j - 1 sign changes, so we have to multiply by the factor:

$$(-1)^{i-1+j-1} = (-1)^{i+j}.$$

3.3 Expansion of the determinant along a row or a column.

Let us see how to calculate the determinant of a square matrix A by **expanding** along the *i*th row:

$$|A| = det(A_1, \dots, A_i, \dots, A_n) = = det(A_1, \dots, a_{i1}E_1 \dots + a_{in}E_n, \dots, A_n) = = a_{i1}det(A_1, \dots, E_1, \dots, A_n) + \dots + a_{in}det(A_1, \dots, E_n, \dots, A_n) = a_{i1}A_{i1} + \dots + a_{in}A_{in}.$$

We deduce the following formula:

$$|A| = \sum_{j=1}^{n} a_{ij} A_{ij}$$

Analogously the formula to calculate the determinant **expanding along the** *j***-th column** is:

$$\boxed{|A| = \sum_{i=1}^{n} a_{ij} A_{ij}}$$

The importance of both formulas is that they allow us to reduce the calculation of an $n \times n$ determinant to that of an $(n-1) \times (n-1)$ one. We can successively apply this reduction of the dimension of the problem as many times as we wish.

4 Rank of a matrix.

Definition 4.1 Given a square matrix A we define the rank of A as the order of a highest-order nonvanishing minor of the matrix.

As a consequence of the properties of the determinant we have:

- 1. The rank of a matrix coincides with the rank of its transpose.
- 2. Elementary row or column operations does not change the rank.

5 Inverse of a matrix.

The use of determinants provides a method to calculate the inverse of a square matrix A. Note that a necessary condition for a square matrix A to have an inverse is that its determinant if not null:

$$A \cdot A^{-1} = Id \quad \Rightarrow \quad det(A)det(A^{-1}) = 1 \quad \Rightarrow \quad det(A) \neq 0 \text{ and } det(A^{-1}) = \frac{1}{det(A)}.$$

We introduce the following definition:

Definition 5.1 Given a square matrix A we call **adjoint matrix** of A the transpose of the matrix of cofactors:

$$(adjA) = \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \dots & A_{nn} \end{pmatrix}$$

Let us now calculate the product:

$$B = A \cdot (adjA).$$

We have:

$$b_{ij} = \sum_{k=1}^{n} a_{ik} (adjA)_{kj} = \sum_{k=1}^{n} a_{ik}A_{jk}.$$

If i = j:

$$b_{ii} = \sum_{k=1}^{n} a_{ik} A_{ik} = |A|.$$

If $i \neq j$,

$$b_{ij} = \sum_{k=1}^{n} a_{ik} A_{jk} = \sum_{k=1}^{n} a_{ik} C_{ik} = |C|,$$

where C is matrix equal to A, except in the *j*-th row that is equal to the *i*-th. From this |C| = 0 and it remains:

 $A \cdot (adjA) = |A|Id.$

On the other hand:

$$(adjA) \cdot A = (A^t \cdot (adjA)^t)^t = (A^t \cdot (adjA^t))^t = |A^t|Id^t = |A|Id$$

Threfore **if** $|A| \neq 0$:

$$\left. \begin{array}{l} A \cdot \frac{1}{|A|} (adjA) = Id \\ \\ \frac{1}{|A|} (adjA) \cdot A = Id \end{array} \right\} \quad \Rightarrow \quad A^{-1} = \frac{1}{|A|} (adjA).$$

We have proved the following theorem:

Theorem 5.2 Let A be an n-dimensional square matrix. A is invertible if and only if its determinant is nonzero. In this case:

$$\[A^{-1} = \frac{1}{|A|} (adjA)\] and \[|A^{-1}| = \frac{1}{|A|}\]$$