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2. Determinants.

1 Basic notions about permutations.

Definition 1.1 Given a natural number n the set of permutations of n elements
is the set of possible rearrangements of the integer numbers 1, 2, . . . , n. It is denoted
by Perm(n).

The elements of Perm(n) are called permutations.

From this, an element of Perm(n) corresponds to a bijective map:

σ : {1, . . . , n} −→ {1, . . . , n}
1 −→ σ(1)
...

...
n −→ σ(n)

σ(i) indicates which number we place at the ith position.

We know that n elements can be ordered in n! different ways, so the set Perm(n)
has n! elements.

Given a permutation σ we can consider the inverse permutation σ−1 which
corresponds to the inverse funcion of σ.

Definition 1.2 A transposition is a permutation that keeps all the elements in
the same order except that two of them are swapped.

It can be proved that every permutation may be represented as a composition of
transpositions. This allows us to define the following:

Definition 1.3 Given a permutation σ we call signature of σ and denote by ε(σ)
the number:

ε(σ) = (−1)k

where k is the number of transpositions in the decomposition of σ.

A permutation can be decomposed into transpositions in different ways. However,
the parity of the number of transpositions in each decomposition is the same. Thus,
if a permutation is a composition of an even number of transpositions, the signature
will be +1; on the contrary, if it is a composition of an odd number of transpositions,
the signature will be −1.

On the other hand, given a decomposition of a permutation into transpositions,
it is clear that the inverse permutation σ−1 is obtained by composing the inverse of
the transpositions. From this, the signature of a permutation and the signature of
its inverse coincide:

ε(σ) = ε(σ−1).

2 Determinant of a square matrix.

2.1 Definition.

Given a square matrix A, we will denote its ith row by Ai:

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

 ; Ai = (ai1, ai2, . . . , ain).

Definition 2.1 The determinant of a square matrix A is a map from the set of
square matrices over the field IK:

Mn×n −→ IK; |A| = det(A1, A2, . . . , An) =

∣∣∣∣∣∣∣∣
a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

∣∣∣∣∣∣∣∣
satisfying the following properties for any i, j ∈ {1, 2, . . . , n}:

1. It is multilinear:

det(A1, . . . , Ai +A′i, . . . An) = det(A1, . . . , Ai, . . . An) + det(A1, . . . , A
′
i, . . . An).

det(A1, . . . , αAi, . . . An) = α · det(A1, . . . , Ai, . . . An), for any α ∈ IK.

2. It is antisymmetric:

det(A1, . . . , Ai, . . . , Aj , . . . , An) = −det(A1, . . . , Aj , . . . , Ai, . . . , An).

3. |In| = 1.

2.2 Properties.

1. The determinant of any matrix with two equal rows is 0:

det(A1, . . . , Ai, . . . , Ai, . . . , An) = 0.

Proof: As a consequence of the antisymmetry condition:

det(A1, . . . , Ai, . . . , Ai, . . . , An) = −det(A1, . . . , Ai, . . . , Ai, . . . , An)

so:

2det(A1, . . . , Ai, . . . , Ai, . . . , An) = 0.
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2. The determinant of any matrix with a null row is 0:

det(A1, . . . , 0, . . . , An) = 0.

Proof. Since the determinant map is multilinear:

det(A1, . . . , 0, . . . , An) = 0 · det(A1, . . . , 0, . . . , An) = 0.

3. If one of the rows of a matrix is multiplied by a scalar and then added to another
row of the same matrix, the resulting matrix has the same determinant as the
original one:

det(A1, . . . , Ai, . . . , Aj + λ ·Ai, . . . , An) = det(A1, . . . , Ai, . . . , Aj , . . . , An).

Proof: We use multilinearity of the determinant and the first property:

det(A1, . . . , Ai, . . . , Aj + λ ·Ai, . . . , An) =
= det(A1, . . . , Ai, . . . , Aj , . . . , An) + λ det(A1, . . . , Ai, . . . , Ai, . . . , An) =
= det(A1, . . . , Ai, . . . , Aj , . . . , An).

2.3 Computation of the determinant

Let A be an n× n matrix.

We denote by Ei the row with a 1 at the ith position and 0’s at all the remaining
ones.

Ei = (0, . . . , 0, 1︸︷︷︸
i

, 0, . . . , 0).

With this notation:

Ai = (ai1, ai2, . . . , ain) =

n∑
j=1

aijEj .

Let us compute the determinant of A:

det(A) = det(A1, A2, . . . , An) = det(

n∑
i1=1

a1i1Ei1 ,

n∑
i2=1

a2i2Ei2 , . . . ,

n∑
in=1

aninEin)

Applying the multilinearity of the determinant, we obtain:

det(A) =

n∑
i1,i2,...,in=1

a1i1a2i2 . . . anin · det(Ei1, Ei2, . . . , Ein).

When two repeated rows appear in the expression det(Ei1, Ei2, . . . , Ein) the cor-
responding determinant is zero. In other case, we can rearrange the rows as
det(E1, E2, . . . , En). For each change of position of two rows there is a change of
sign. As a consequence of this and with the notation described in the preliminary
section of the chapter, the formula of the determinant is:

det(A) =
∑

σ∈Perm(n)
ε(σ)a1σ(1)a2σ(2) . . . anσ(n)

2.4 Determinant of the transpose of a matrix.

Theorem 2.2 If A is any n× n matrix

det(A) = det(At)

Proof: We will use the formula obtained in the previous section:

|At| =
∑

σ∈Perm(n)
ε(σ)(At)1σ(1)(A

t)2σ(2) . . . (A
t)nσ(n) =

=
∑

σ∈Perm(n)
ε(σ)aσ(1)1aσ(2)2 . . . aσ(n)n.

We now rewrite each monomial above by using the inverse permutation of each σ.
Recall that the signature of a permutation and the signature of its inverse coincide.
From this:

|At| =
∑

σ∈Perm(n)

ε(σ−1)a1σ−1(1)a2σ−1(2) . . . anσ−1(n).

Finally, in the above summation σ runs through all the possible permutations of n
elements, so σ−1 also runs through all the possible permutations of n elements. We
obtain:

det(At) =
∑

ρ∈Perm(n)

ε(ρ)a1ρ(1)a2ρ(2) . . . anρ(n) = det(A).

The main consequence of this theorem is:

Any property of the determinant
which depends on the rows of the matrix
is also true for columns.

2.5 Determinant of the product of two matrices.

Theorem 2.3 Let A,B be two n× n matrices. Then

det(AB) = det(A)det(B).

Proof: Denote by C = AB the product matrix of A and B. We know that:

cij =

n∑
k=1

aikbkj , and from this Ci =

n∑
k=1

aikBk.

Then:

|C| = det(C1, C2, . . . , Cn)
= det(

∑n

k1=1
a1k1Bk1 ,

∑n

k2=1
a1k2Bk2 , . . . ,

∑n

kn=1
a1knBkn) =

=
∑n

k1,k2,...,kn=1
a1k1a1k2 . . . a1kndet(Bk1 , Bk2 , . . . , Bkn).
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Whenever ki = kj for some i and j, the determinant det(Bk1 , Bk2 , . . . , Bkn) is zero.
Thus, we consider only the terms where the indices k1, . . . , kn take all possible values
between 1 and n. That is, these indices define a permutation. Therefore the previous
expression can be written as:

|C| =
∑

σ∈Perm(n)

a1σ(1)a2σ(2) . . . anσ(n)det(Bσ(1), Bσ(2), . . . , Bσ(n))

We can rearrange the rows Bσ(1), Bσ(2), . . . , Bσ(n) as B1, . . . , Bn . For each change
os position of two rows there is a change of sign. We obtain:

|C| =
∑

σ∈Perm(n)

ε(σ)a1σ(1)a2σ(2) . . . anσ(n)det(B1, B2, . . . , Bn) = det(A)det(B).

3 Cofactor expansion of the determinant.

3.1 Minors of a matrix.

Definition 3.1 A minor of order r of a matrix A is the determinant of some r×r
matrix, obtained from A by removing some of its rows and columns:

A

(
i1i2 . . . ir
j1j2 . . . jr

)
=

∣∣∣∣∣∣∣∣
ai1j1 ai1j2 . . . ai1jr
ai2j1 ai2j2 . . . ai2jr

...
...

. . .
...

airj1 airj2 . . . airjr

∣∣∣∣∣∣∣∣
with i1 < i2 < . . . < ir and j1 < j2 < . . . < jr.

3.2 Cofactors of a matrix.

Definition 3.2 Given a square matrix A ∈ Mn×n the cofactor Aij is the minor
obtained by suppressing the i-th row and the j-th column, multiplied by the factor
(−1)i+j ..

The following properties hold:

Proposition 3.3 Given a square matrix A ∈Mn×n:

A11 =

∣∣∣∣∣∣∣∣
1 0 . . . 0
a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

∣∣∣∣∣∣∣∣

Proof: Let us denote by B the matrix:

B =


1 0 . . . 0
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann


Applying the formula for the determinant, we have:

|B| =
∑

σ∈Perm(n)

ε(σ)b1σ(1)b2σ(2) . . . bnσ(n)

But bij = 0 when i = 1 and j > 1. Moreover b11 = 1. If σ is a permutation that
changes the position of 1 (σ(1) 6= 1) then b1σ(1) = 0 and the corresponding term of
the sum is zero. From this, we can consider only permutations that leave 1 fixed.
These correspond to permutations on the set {2, . . . , n}, so:

|B| =
∑

σ∈Perm(2,...,n)
ε(σ)b2σ(2)b3σ(3) . . . bnσ(n)

=
∑

σ∈Perm(2,...,n)
ε(σ)a2σ(2)a3σ(3) . . . anσ(n) = A11.

Corollary 3.4 Given a square matrix A ∈Mn×n:

Aij =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 . . . a1j . . . a1n
...

. . .
...

. . .
...

ai−1 1 . . . ai−1 j . . . ai−1n

0 . . . 1 . . . 0
ai+1 1 . . . ai+1 j . . . ai+1n

...
. . .

...
. . .

...
an1 . . . anj . . . ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Proof: It is sufficient to apply the previous result. We can move the i-th row and
the j-th column to the position 1, 1. We make i− 1, j − 1 sign changes, so we have
to multiply by the factor:

(−1)i−1+j−1 = (−1)i+j .
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3.3 Expansion of the determinant
along a row or a column.

Let us see how to calculate the determinant of a square matrix A by expanding
along the ith row:

|A| = det(A1, . . . , Ai, . . . , An) =
= det(A1, . . . , ai1E1 . . .+ ainEn, . . . , An) =
= ai1det(A1, . . . , E1, . . . , An) + . . .+ aindet(A1, . . . , En, . . . , An)
= ai1Ai1 + . . .+ ainAin.

We deduce the following formula:

|A| =
∑n

j=1
aijAij

Analogously the formula to calculate the determinant expanding along the j-th
column is:

|A| =
∑n

i=1
aijAij

The importance of both formulas is that they allow us to reduce the calculation of
an n× n determinant to that of an (n− 1)× (n− 1) one. We can successively apply
this reduction of the dimension of the problem as many times as we wish.

4 Rank of a matrix.

Definition 4.1 Given a square matrix A we define the rank of A as the order of a
highest-order nonvanishing minor of the matrix.

As a consequence of the properties of the determinant we have:

1. The rank of a matrix coincides with the rank of its transpose.

2. Elementary row or column operations does not change the rank.

5 Inverse of a matrix.

The use of determinants provides a method to calculate the inverse of a square matrix
A. Note that a necessary condition for a square matrix A to have an inverse is that
its determinant if not null:

A ·A−1 = Id ⇒ det(A)det(A−1) = 1 ⇒ det(A) 6= 0 and det(A−1) =
1

det(A)
.

We introduce the following definition:

Definition 5.1 Given a square matrix A we call adjoint matrix of A the transpose
of the matrix of cofactors:

(adjA) =


A11 A21 . . . An1
A12 A22 . . . An2

...
...

. . .
...

An1 An2 . . . Ann

 .

Let us now calculate the product:

B = A · (adjA).

We have:

bij =

n∑
k=1

aik(adjA)kj =

n∑
k=1

aikAjk.

If i = j:

bii =

n∑
k=1

aikAik = |A|.

If i 6= j,

bij =

n∑
k=1

aikAjk =

n∑
k=1

aikCik = |C|,

where C is matrix equal to A, except in the j-th row that is equal to the i-th. From
this |C| = 0 and it remains:

A · (adjA) = |A|Id.
On the other hand:

(adjA) ·A = (At · (adjA)t)t = (At · (adjAt))t = |At|Idt = |A|Id

Threfore if |A| 6= 0:

A · 1

|A| (adjA) = Id

1

|A| (adjA) ·A = Id

 ⇒ A−1 =
1

|A| (adjA).

We have proved the following theorem:

Theorem 5.2 Let A be an n-dimensional square matrix. A is invertible if and only
if its determinant is nonzero. In this case:

A−1 =
1

|A| (adjA) and |A−1| = 1

|A|
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