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2. Combinatorics.
Combinatorics is the branch of mathematics concerned with counting how many

structures can be assembled by combining a finite number of elements under certain
rules.

1 Product rule.

If we make a series of choices in k stages, such that at the i-th stage we have ni
possibilities, the total number of possible choices is:

n1 · n2 · . . . · nk.

Equivalently, if A1, A2, . . . , Ak are nonempty finite sets, the number of elements
of the Cartesian product A1 ×A2 × . . .×Ak is:

#(A1 ×A2 × . . .×Ak) = #A1 ·#A2 · . . . ·#Ak.

2 Variations (arrangements).

2.1 Variations with repetition.

Variations (or arrangements) with repetition of n elements taken p at a time
are the number of ways of selecting p items from a collection of n items, such that
the order of selection matters and the repetition of items is allowed.

V Rn,p = n · n · . . . · n︸ ︷︷ ︸
p times

= np.

2.2 Variations without repetition.

Variations (or arrangements) without repetition of n elements taken p at a
time are the number of ways of selecting p items from a collection of n items, such
that the order of selection matters and the repetition of items is NOT allowed.

Vn,p = n · (n− 1) · . . . · (n− p+ 1)︸ ︷︷ ︸
p factors

=
n!

(n− p)! .

3 Permutations.

Permutations of n elements are the different ways of ordering those items. This is
the same as the variations without repetition of n elements taken n at a time:

Pn = n · (n− 1) · (n− 2) · . . . · 2 · 1 = n!

3.1 Permutations with repetition.

Given a set of n objects such that there are n1 identical objects of type 1, n2 identical
objects of type 2, . . ., and nk identical objects of type k, permutations with
repetition are the different ways of ordering those items (the elements of each type
are indistinguishable from each other):

PR(n;n1, n2, . . . , nk) =
n!

n1!n2! . . . nk!
.

4 Combinations.

4.1 Binomial coefficients.

Definition 4.1 Given two nonnegative integers n, p, with n ≥ p, the binomial
coefficient ”n choose p” is defined as:

(
n

p

)
=

n!

p!(n− p)! .

Some properties of binomial coefficients are:

1.
(
n
0

)
=
(
n
n

)
= 1.

2.
(
n
p

)
=
(

n
n−p

)
.

3.
(
n
p

)
+
(

n
p−1

)
=
(
n+1
p

)
.
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Proof:(
n
p

)
+
(

n
p−1

)
=

n!

p!(n− p)!
+

n!

(p− 1)!(n− p + 1)!
=

=
n!

(p− 1)!(n− p)!

(
1

p
+

1

n− p + 1

)
=

=
n!

(p− 1)!(n− p)!

(
n + 1

p(n− p + 1)

)
=

=
(n + 1)!

p!(n− p + 1)!
=

(
n + 1

p

)
.

The name of binomial coefficient comes from the fact that these can be used to
give a formula for the power of a sum of two terms.

Theorem 4.2 (Binomial Theorem)

(a+ b)n =

n∑
k=0

(
n

k

)
ak bn−k (a, b ∈ IR, n ∈ IN).

Proof:

We proceed by induction:

- For n = 1 it is clear that:

(a+ b)1 =

(
1

0

)
a1b0 +

(
1

1

)
a0b1.

- Assume that the formula holds for n− 1 and let us prove it for n:

(a+ b)n = (a+ b)(a+ b)n−1 = (a+ b)(
∑n−1

k=0

(
n−1
k

)
ak bn−1−k) =

= (
∑n−1

k=0

(
n−1
k

)
ak+1 bn−1−k) + (

∑n−1

k=0

(
n−1
k

)
ak bn−k) =

= (
∑n

k=1

(
n−1
k−1

)
ak bn−k) + (

∑n−1

k=0

(
n−1
k

)
ak bn−k) =

= bn +
∑n−1

k=1
(
(
n−1
k−1

)
+
(
n−1
k

)
)akbn−k + an =

= bn +
∑n−1

k=1

(
n
k

)
akbn−k + an =

∑n

k=0

(
n
k

)
akbn−k.

4.2 Combinations without repetition.

Combinations of n elements taken p at a time are the number of ways of selecting
p items from a collection of n items, such that the order of selection does not matter.

The repetition of items is NOT allowed. Equivalently, it is the number of subsets
with p elements of a set with n elements.

Cn,p =

(
n

p

)
=
Vn,p
p!

=
n!

p!(n− p)! .

4.3 Combinations with repetition

Combinations with repetition of n elements taken p at a time are the number
of ways of selecting p items from n types of items, such that the order of selection
does not matter. The repetition of types of items is allowed.

CRn,p =

(
n+ p− 1

p

)
.

5 Summary.

Groups with p elements choosen from n items.

Criteria. REPETITION ALLOWED REPETITION NOT ALLOWED

ORDER
DOES

MATTER

Variations with rep.
V Rn,p = np

Variations without rep.

Vn,p =
n!

(n− p)!
ORDER

DOES NOT
MATTER

Combinations with rep.

CRn,p =

(
n+ p− 1

p

) Combinations without rep.

Cn,p =

(
n
p

)
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