2. Combinatorics.

Combinatorics is the branch of mathematics concerned with counting how many structures can be assembled by combining a finite number of elements under certain rules.

1 Product rule.

If we make a series of choices in k stages, such that at the i-th stage we have n_{i} possibilities, the total number of possible choices is:

$$
n_{1} \cdot n_{2} \cdot \ldots \cdot n_{k}
$$

Equivalently, if $A_{1}, A_{2}, \ldots, A_{k}$ are nonempty finite sets, the number of elements of the Cartesian product $A_{1} \times A_{2} \times \ldots \times A_{k}$ is:

$$
\#\left(A_{1} \times A_{2} \times \ldots \times A_{k}\right)=\# A_{1} \cdot \# A_{2} \cdot \ldots \cdot \# A_{k}
$$

2 Variations (arrangements).

2.1 Variations with repetition.

Variations (or arrangements) with repetition of n elements taken p at a time are the number of ways of selecting p items from a collection of n items, such that the order of selection matters and the repetition of items is allowed.

$$
V R_{n, p}=\underbrace{n \cdot n \cdot \ldots \cdot n}_{p \text { times }}=n^{p} .
$$

2.2 Variations without repetition.

Variations (or arrangements) without repetition of n elements taken p at a time are the number of ways of selecting p items from a collection of n items, such that the order of selection matters and the repetition of items is NOT allowed.

$$
V_{n, p}=\underbrace{n \cdot(n-1) \cdot \ldots \cdot(n-p+1)}_{p \text { factors }}=\frac{n!}{(n-p)!}
$$

3 Permutations.

Permutations of n elements are the different ways of ordering those items. This is the same as the variations without repetition of n elements taken n at a time:

$$
P_{n}=n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot 2 \cdot 1=n!
$$

3.1 Permutations with repetition.

Given a set of n objects such that there are n_{1} identical objects of type $1, n_{2}$ identical objects of type $2, \ldots$, and n_{k} identical objects of type k, permutations with repetition are the different ways of ordering those items (the elements of each type are indistinguishable from each other):

$$
\operatorname{PR}\left(n ; n_{1}, n_{2}, \ldots, n_{k}\right)=\frac{n!}{n_{1}!n_{2}!\ldots n_{k}!} .
$$

4 Combinations.

4.1 Binomial coefficients.

Definition 4.1 Given two nonnegative integers n, p, with $n \geq p$, the binomial coefficient " n choose p " is defined as:

$$
\binom{n}{p}=\frac{n!}{p!(n-p)!}
$$

Some properties of binomial coefficients are:

1. $\binom{n}{0}=\binom{n}{n}=1$.
2. $\binom{n}{p}=\binom{n}{n-p}$.
3. $\binom{n}{p}+\binom{n}{p-1}=\binom{n+1}{p}$.

Proof:

$$
\begin{aligned}
\binom{n}{p}+\binom{n}{p-1} & =\frac{n!}{p!(n-p)!}+\frac{n!}{(p-1)!(n-p+1)!}= \\
& =\frac{n!}{(p-1)!(n-p)!}\left(\frac{1}{p}+\frac{1}{n-p+1}\right)= \\
& =\frac{n!}{(p-1)!(n-p)!}\left(\frac{n+1}{p(n-p+1)}\right)= \\
& =\frac{(n+1)!}{p!(n-p+1)!}=\binom{n+1}{p} .
\end{aligned}
$$

The name of binomial coefficient comes from the fact that these can be used to give a formula for the power of a sum of two terms.

Theorem 4.2 (Binomial Theorem)

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k} \quad(a, b \in \mathbb{R}, n \in \mathbb{N})
$$

Proof:

We proceed by induction:

- For $n=1$ it is clear that:

$$
(a+b)^{1}=\binom{1}{0} a^{1} b^{0}+\binom{1}{1} a^{0} b^{1} .
$$

- Assume that the formula holds for $n-1$ and let us prove it for n :

$$
\begin{aligned}
(a+b)^{n} & =(a+b)(a+b)^{n-1}=(a+b)\left(\sum_{k=0}^{n-1}\binom{n-1}{k} a^{k} b^{n-1-k}\right)= \\
& =\left(\sum_{k=0}^{n-1}\binom{n-1}{k} a^{k+1} b^{n-1-k}\right)+\left(\sum_{k=0}^{n-1}\binom{n-1}{k} a^{k} b^{n-k}\right)= \\
& =\left(\sum_{k=1}^{n}\binom{n-1}{k-1} a^{k} b^{n-k}\right)+\left(\sum_{k=0}^{n-1}\binom{n-1}{k} a^{k} b^{n-k}\right)= \\
& =b^{n}+\sum_{k=1}^{n-1}\left(\binom{n-1}{k-1}+\binom{n-1}{k}\right) a^{k} b^{n-k}+a^{n}= \\
& =b^{n}+\sum_{k=1}^{n-1}\binom{n}{k} a^{k} b^{n-k}+a^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k} .
\end{aligned}
$$

4.2 Combinations without repetition.

Combinations of n elements taken p at a time are the number of ways of selecting p items from a collection of n items, such that the order of selection does not matter.

The repetition of items is NOT allowed. Equivalently, it is the number of subsets with p elements of a set with n elements.

$$
C_{n, p}=\binom{n}{p}=\frac{V_{n, p}}{p!}=\frac{n!}{p!(n-p)!} .
$$

4.3 Combinations with repetition

Combinations with repetition of n elements taken p at a time are the number of ways of selecting p items from n types of items, such that the order of selection does not matter. The repetition of types of items is allowed.

$$
C R_{n, p}=\binom{n+p-1}{p}
$$

5 Summary.

Groups with p elements choosen from n items.		
Criteria.	REPETITION ALLOWED	REPETITION NOT ALLOWED
ORDER	Variations with rep.	Variations without rep.
DOES	$V R_{n, p}=n^{p}$	$V_{n, p}=\frac{n!}{(n-p)!}$
MATTER		Combinations without rep.
ORDER	Combinations with rep.	Comb
DOES NOT	$C R_{n, p}=\binom{n+p-1}{p}$	$C_{n, p}=\binom{n}{p}$
MATTER		

