Part I

Introductory notions.

1. Sets and functions.

1 Sets.

1.1 Definition and notation.

Definition 1.1 A set is a collection of objects called elements.

We will use the following notation:

1. " \exists " will mean " there exists".
2. " \exists " will mean " there exists a unique".
3. :=" will mean "equal by definition".
4. Sets will be represented with capital letters A, B, C, \ldots.
5. Elements will be represented with lowercase letters a, b, c, \ldots
6. If a is an element of a set A we will write $a \in A$ (or $A \ni a)$.
7. If a is NOT an element of a set A we will write $a \notin A$ (or $A \not \supset a$).
8. If all the elements of a set A are in B, we will write $A \subset B$ (or $B \supset A$) and say that A is a subset of B. It is clear that:

$$
A=B \Longleftrightarrow A \subset B \text { and } B \subset A
$$

Because of this, the usual method to check that two sets A and B are equal is to verify first that $A \subset B$ and then that $B \subset A$.
9. We will denote by \emptyset the empty set, that is, the set having no elements.
10. Given a set A we will denote by $\mathcal{P}(A)$ the set of all subsets of A (it is called power set of A).
11. The number of elements of a finite set A is called the cardinal of A and it is denoted by \#A.

1.2 Operations with sets.

Definition 1.2 Given two sets A and B, the union of A and B is the set $A \cup B$ formed by all the elements of A and B :

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

This definition can be extended to n sets (and in general to an arbitrary family of sets):

$$
A_{1} \cup A_{2} \cup \ldots \cup A_{n}=\left\{x \mid x \in A_{1} \text { or } x \in A_{2} \text { or } \ldots \text { or } x \in A_{n}\right\}
$$

Definition 1.3 Given two sets A and B the intersection $A \cap B$ is the set of all those elements which are common to both A and B.

$$
A \cap B=\{x \mid x \in A, x \in B\}
$$

Again, this definition cam be extended to n sets (and in general to an arbitrary family of sets):

$$
A_{1} \cap A_{2} \cap \ldots \cap A_{n}=\left\{x \mid x \in A_{1}, x \in A_{2}, \ldots, x \in A_{n}\right\}
$$

Definition 1.4 Given two sets A and X such that $A \subset X$, the complement of A with respect to X is the set of elements in X that are not in A.

$$
X \backslash A=\{x \in X \mid x \notin A\} .
$$

Some properties of these operations are:

1. $(A \cup B) \cap C=(A \cap C) \cup(B \cap C)$.

Proof:

$$
\begin{aligned}
x \in(A \cup B) \cap C & \Longleftrightarrow\left\{\begin{array}{c}
x \in A \cup B \\
\text { and } \\
x \in C
\end{array}\right\} \Longleftrightarrow\left\{\begin{array}{c}
x \in A \text { or } x \in B \\
\text { and } \\
x \in C
\end{array}\right\} \Longleftrightarrow \\
& \Longleftrightarrow\left\{\begin{array}{c}
x \in A \text { and } x \in C \\
\text { or } \\
x \in B \text { and } x \in C
\end{array}\right\} \Longleftrightarrow x \in(A \cap C) \cup(B \cap C)
\end{aligned}
$$

2. $(A \cap B) \cup C=(A \cup C) \cap(B \cup C)$.
3. $X \backslash(X \backslash A)=A$.
4. $A \subset B \Rightarrow X \backslash B \subset X \backslash A$.
5. De Morgan's laws. Let A, B be two sets contained in another set X. Then:

$$
\begin{array}{ll}
X \backslash(A \cup B)=(X \backslash A) \cap(X \backslash B) . & \begin{array}{l}
\text { The complement of the union } \\
\text { of two sets is the same as } \\
\text { the intersection of their complements. }
\end{array} \\
X \backslash(A \cap B)=(X \backslash A) \cup(X \backslash B) . & \begin{array}{l}
\text { The complement of the intersection } \\
\text { of two sets is the same as } \\
\text { the union of their complements. }
\end{array}
\end{array}
$$

Proof: Let us prove that $X \backslash(A \cup B)=(X \backslash A) \cap(X \backslash B)$. For any element $x \in X$ we have:

$$
\begin{aligned}
x \in X \backslash(A \cup B) & \Longleftrightarrow x \notin A \cup B \Longleftrightarrow x \notin A \text { and } x \notin B \Longleftrightarrow \\
& \Longleftrightarrow\left\{\begin{array}{c}
x \in(X \backslash A) \\
\text { and } \\
x \in(X \backslash B)
\end{array}\right\} \Longleftrightarrow x \in(X \backslash A) \cap(X \backslash B)
\end{aligned}
$$

Definition 1.5 Given two sets A and B, the Cartesian product $A \times B$ is the set of all ordered pairs in which the first element belongs to A and the second belongs to B :

$$
A \times B=\{(a, b) \mid a \in A, b \in B\} .
$$

This definition can be generalized to n sets:

$$
A_{1} \times A_{2} \times \ldots \times A_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{1} \in A_{1}, a_{2} \in A_{2}, \ldots, a_{n} \in A_{n}\right\}
$$

When all sets are equal, the Cartesian product is denoted by:

$$
A^{n}=\underbrace{A \times A \times \ldots \times A}_{n \text { times }} .
$$

2 Correspondences.

2.1 Basic definitions.

Definition 2.1 Given two sets A and B, a correspondence between A and B is a subset F of the Cartesian product $A \times B$. Moreover:

1. A is called the initial set of the correspondence.
2. B is called the final set of the correspondence.
3. If $(a, b) \in F$ we will say that b is an image of a and a is an origin of b.
4. The domain of F is the set formed by all the origins of the elements of B :

$$
\text { Domain of } F=\{a \in A \mid \exists y \in B \text { with }(a, y) \in F\} \text {. }
$$

5. The range of F is the set formed by all the images of the elements of A :

$$
\text { Range of } F=\{b \in B \mid \exists x \in A \text { with }(x, b) \in F\} .
$$

Definition 2.2 Given two sets A and B and a correspondence F between A and B, the inverse correspondence F^{-1} between B and A is defined as follows:

$$
F^{-1}=\{(b, a) \in B \times A \mid(a, b) \in F\} .
$$

The following relations hold:

- Initial set of $F=$ Final set of F^{-1}.
- Final set of $F=$ Initial set of F^{-1}.
- Domain of $F=$ Range of F^{-1}.
- Range of $F=$ Domain of F^{-1}.

Definition 2.3 Given three sets A, B, C and two correspondences, F from A to B and G from B to C, we can define a correspondence $H=G \circ F$ from A to C as:

$$
H=\{(a, c) \in A \times C \mid \exists b \in B \text { with }(a, b) \in F \text { and }(b, c) \in G\}
$$

2.2 Functions.

2.2.1 Definition.

Definition 2.4 A function or map from the set A to the set B is a correspondence on $A \times B$ satisfying the following conditions:

1. The domain is the entire set A.

$$
\forall a \in A, \quad \exists b \in B \mid(a, b) \in F
$$

2. Each element of A has a unique image.

$$
\forall a \in A, \quad \exists^{*} b \in B \mid(a, b) \in F .
$$

Both conditions are equivalent to any element of A having a unique image.

$$
\forall a \in A, \quad \exists^{*} b \in B \mid(a, b) \in F
$$

We will denote a funcion F from A to B by $f: A \longrightarrow B$; when $(a, b) \in F$ we will write $f(a)=b$. If A^{\prime} is a subset of $A, f\left(A^{\prime}\right)$ will be the set of all images of the elements of A^{\prime} :

$$
f\left(A^{\prime}\right)=\left\{f(a) \mid a \in A^{\prime}\right\}
$$

2.2.2 Classification of functions.

Given two sets A and B, we distinguish several types of functions from A to B :

1. A function is called injective when each element of the range has a unique origin. To verify the injectivity of a function, any of the following equivalent conditions can be used:

$$
f \text { injective } \Longleftrightarrow f(x)=f(y) \Rightarrow x=y \Longleftrightarrow x \neq y \Rightarrow f(x) \neq f(y)
$$

2. A function is called surjective when the range is equal to the entire set B :

$$
f \text { surjective } \Longleftrightarrow f(A)=B \Longleftrightarrow \forall b \in B, \quad \exists a \in A \mid f(a)=b
$$

3. A function is called bijective when it is injective and surjective, that is, any element of B has a unique origin:

$$
f \text { bijective } \Longleftrightarrow \begin{aligned}
& f \text { injective } \\
& f \text { surjective }
\end{aligned} \Longleftrightarrow \forall b \in B, \quad \exists^{*} a \in A \mid f(a)=b
$$

2.2.3 Inverse function.

Given a function f from A to B, the inverse correspondence of f always exists, but sometimes it is not a function. Note that:

$$
\begin{aligned}
f^{-1} \text { function } & \Longleftrightarrow \forall b \in B, \quad \exists \exists^{*} a \in A \mid(b, a) \in F^{-1} \Longleftrightarrow \\
& \Longleftrightarrow \forall b \in B, \quad \exists^{*} a \in A \mid(a, b) \in F \Longleftrightarrow \\
& \Longleftrightarrow \forall b \in B, \quad \exists^{*} a \in A \mid f(a)=b \Longleftrightarrow \\
& \Longleftrightarrow\left\{\begin{array}{l}
f \text { injective } \\
f \text { surjective }
\end{array}\right.
\end{aligned}
$$

From this:
Proposition 2.5 Let f be a function from A to B. The inverse correspondence f^{-1} is a function if and only if f is bijective.

As a consequence of this, we can only compute the inverse function of a bijective function. In this case this inverse function will also be bijective.

2.2.4 Composition of functions.

Definition 2.6 Given three sets A, B, C, and two functions $f: A \longrightarrow B$ and g : $B \longrightarrow C$ we define the function f composed with g as:

$$
(a, c) \in g \circ f \Longleftrightarrow \exists b \in B \mid(a, b) \in f \text { and }(b, c) \in g,
$$

or equivalently,

$$
(g \circ f): A \longrightarrow C \quad(g \circ f)(a)=g(f(a))
$$

The equivalence between both definitions is immediate; it is sufficient to note that:

$$
(a, b) \in f \text { and }(b, c) \in g \Longleftrightarrow b=f(a) \text { and } c=g(b) \Longleftrightarrow c=g(f(a))
$$

The second definition makes it clear that $g \circ f$ is actually a function: since f and g are functions each element of A has a unique image defined in C.
Let $f: A \longrightarrow B, g: B \longrightarrow C$ and $h: C \longrightarrow D$ be three functions. Let us see some properties of the composition:

1. The identity function on $A, i d_{A}: A \longrightarrow A$ is defined to be a function satisfying $i d_{A}(a)=a$ for all $a \in A$. It is the identity element for the composition:

$$
i d_{B} \circ f=f ; \quad f \circ i d_{A}=f .
$$

2. The associative property is satisfied, that is:

$$
h \circ(g \circ f)=(h \circ g) \circ f
$$

3. The composition of functions is NOT commutative.
4. If $f: A \longrightarrow B$ is bijective, $f \circ f^{-1}=i d_{B}$ and $f^{-1} \circ f=i d_{A}$.
5. f and g injective $\Rightarrow g \circ f$ is injective.

Proof:

$$
(g \circ f)(x)=(g \circ f)(y) \Rightarrow g(f(x))=g(f(y)) \stackrel{g}{g} \stackrel{\text { injct. }}{\Rightarrow} f(x)=f(y) \stackrel{f}{f \text { injct. }} x=y
$$

6. f and g surjective $\Rightarrow g \circ f$ is surjective.

Proof:

$$
(g \circ f)(A)=g(f(A))^{f \text { surjective }} g(B)^{g \text { surjective }} C
$$

7. f and g bijective $\Rightarrow \quad g \circ f$ bijective.
8. $g \circ f$ injective $\Rightarrow f$ injective.

Proof:

$$
f(x)=f(y) \Rightarrow g(f(x))=g(f(y)) \stackrel{(g \circ f)}{\Rightarrow} \stackrel{\text { injct. }}{ } x=y .
$$

9. $g \circ f$ surjective $\Rightarrow \quad g$ surjective.

Proof:

$$
f(A) \subset B \Rightarrow g(f(A)) \subset g(B)^{g \circ f} \stackrel{f \text { surj. }}{\Rightarrow} C \subset g(B) \stackrel{g(B) \subset C}{\Rightarrow} g(B)=C .
$$

10. $g \circ f$ bijective $\Rightarrow \quad f$ injective and g surjective.
