Let $c_{1} c_{2} c_{3} c_{4} c_{5} c_{6} c_{7} c_{8}$ be the eight digits of your $\mathrm{DNI}^{(1)}$. For example, if the DNI is 32478910 , then $c_{1}=3, c_{2}=2, c_{3}=4, c_{4}=7, c_{5}=8, c_{6}=9, c_{7}=1, c_{8}=0$.

For each i, with $1 \leq i \leq 8$ we call a_{i} the remainder of c_{i} module 3 , that is, the remainder obtained by dividing c_{i} by 3 . In the above example $a_{1}=0, a_{2}=2, a_{3}=1$, $a_{4}=1, a_{5}=2, a_{6}=0, a_{7}=1, a_{8}=0$.

Let $\mathcal{M}_{2 \times 2}(\mathbb{R})$ be the vector space of 2×2 square matrices. Consider the following subsets:

$$
\begin{aligned}
U & =\left\{A \in \mathcal{M}_{2 \times 2}(\mathbb{R}) \mid A=A^{t}\right\} \\
V & =\mathcal{L}\left\{\left(\begin{array}{cc}
1 & 0 \\
a_{1} & a_{2}
\end{array}\right),\left(\begin{array}{cc}
a_{3} & 0 \\
a_{4} & 1
\end{array}\right),\left(\begin{array}{cc}
a_{3} & 0 \\
2 & 1
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
a_{6} & a_{5}
\end{array}\right)\right\} \\
W & =\left\{A \in \mathcal{M}_{2 \times 2}(\mathbb{R}) \mid \operatorname{det}(A)=0\right\} \\
Z & =\mathcal{L}\left\{\left(\begin{array}{cc}
a_{1} & 1 \\
2 & a_{3}
\end{array}\right)\right\}
\end{aligned}
$$

1. Which of them are vector subspaces of $\mathcal{M}_{2 \times 2}(\mathbb{R})$?. Justify the answer.
2. Find the parametric and implicit equations of $U \cap V$ with respect to the canonical basis.
3. Find $\operatorname{dim}(U), \operatorname{dim}(V), \operatorname{dim}(U \cap V), \operatorname{dim}(U+V)$. Are U and V complementary subspaces?
4. Can any matrix of $\mathcal{M}_{2 \times 2}(\mathbb{R})$ be written as the sum of a matrix in U and another matrix in V ? Is there a matrix that can be expressed in two different ways as the sum of one of U and another of V ? If yes, give an example.
5. Prove that $B=\left\{\left(\begin{array}{cc}1 & 0 \\ 0 & a_{2}\end{array}\right),\left(\begin{array}{cc}0 & 2 \\ a_{6} & 0\end{array}\right),\left(\begin{array}{cc}0 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}0 & 0 \\ 1 & a_{7}\end{array}\right)\right\}$ is a basis of $\mathcal{M}_{2 \times 2}(\mathbb{R})$.
6. Find the parametric and implicit equations of Z with respect to the basis B.
7. Study whether U and Z are complementary subspaces. If they are, find the matrix $A \in \mathcal{M}_{2 \times 2}(\mathbb{R})$ which is the projection of $\left(\begin{array}{cc}c_{5} & 2 \\ 0 & a_{2}\end{array}\right)$ onto Z along U and the projection of the same matrix onto U along Z.
8. Give the implicit equations in the canonical basis of a vector subspace T such that T and V are complementary subspaces.

[^0] as many "fours" as necessary. For example if it is $Z Z 13456$ you can use 44413456 .

Rules:

- The submission of the assignment is voluntary.
- The deadline is Friday, December 16 at 11:59 p.m.
- It will contribute a maximum of 0.5 points towards the final mark of the subject, as explained in the introductory class.

- Only the assignments submitted on time will be considered.

- Any indication of academic malpractice will result in disciplinary action, including not passing the course.
- In the submitted assignment you must include your name and DNI, and keep a minimum of quality in the presentation.
- The assignment should be submitted in PDF format through the Teams platform. The name of the file must be "T2-Name and surname.pdf". For example: "T2-Luis Fuentes García.pdf". They will also be accepted in paper form exceptionally.
- Students may be required to present and explain the submitted assignment orally and show full knowledge of what they have written.

[^0]: ${ }^{(1)}$ In the event that the DNI has less than 8 digits, you can complete it on the left with

