Let d_{1} and d_{2} be the last two digits of your $D N I$. Throughout the problem we will define $a=2+\left[d_{1} / 2\right]$ and $b=2+\left[d_{2} / 2\right]$, where $[x]$ is the floor function, that is, the greatest integer less than or equal to x.

The goal of this assigment is counting how many passwords of a given length can be formed by combining the first a letters of the alphabet and the first b digits $(0,1, \ldots, b-1)$, under certain conditions.

1. How many 7 -character passwords (letters and digits) can be formed?
2. How many 7 -character passwords can be formed such that letters and digits alternate (there can't be two letters or two digits in a row)?
3. Generalize the previous result for an arbitrary n-character password.
4. How many 7 -character passwords can be formed that contain 3 letters and 4 digits?
5. Now, we consider the n-character passwords where there are no two consecutive letters (but there can be two consecutive digits). Let x_{n} be the number of such passwords with a letter as its last character and y_{n} those with a digit as its last character.
(a) Justify that $x_{n+1}=a \cdot y_{n}$ and $y_{n+1}=b \cdot\left(x_{n}+y_{n}\right)$.
(b) Express the previous relation with a matrix equation, finding $A \in \mathcal{M}_{2 \times 2}$ such that:

$$
\binom{x_{n+1}}{y_{n+1}}=A\binom{x_{n}}{y_{n}}
$$

(c) Prove by induction that:

$$
\binom{x_{n}}{y_{n}}=A^{n-1}\binom{x_{1}}{y_{1}}
$$

(d) Using the previous expressions, compute the number of 9 -character passwords such that there are no consecutive letters.

Rules:

- The submission of the assignment is voluntary.
- The deadline is Friday, October 28 at 11:59 p.m.
- It will contribute a maximum of 0.5 points towards the final mark of the subject, as explained in the introductory class.

- Only the assignments submitted on time will be considered.

- Any indication of academic malpractice will result in disciplinary action, including not passing the course.
- In the submitted assignment you must include your name and DNI, and keep a minimum of quality in the presentation.
- The assignment should be submitted in PDF format through the Teams platform. However, they will also be accepted in paper form exceptionally.
- Students may be required to present and explain the submitted assignment orally and show full knowledge of what they have written.

Answers must be reasonably justified.

