1.- With letters from the word INTERNET,
(i) How many 8-letter words can be formed?
(ii) How many 7 -letter words? How many 6 -letter ones?
(1.1 points)
2.- Given $n \in \mathbb{N}$, the matrix $P_{n} \in \mathcal{M}_{n \times n}(\mathbb{R})$ is defined as:

$$
\left(P_{n}\right)_{i j}=\left\{\begin{array}{r}
i \text { if } i=j \\
n \text { if } i \neq j
\end{array}\right.
$$

(i) Write down the matrix P_{4} and find its determinant.
(ii) For any $n \geq 2$, find $\operatorname{det}\left(P_{n}\right)$.
(iii) For which values of n is P_{n} congruent with the identity matrix?
3.- Let A, B and C be three $n \times n$ invertible matrices. Find trace (M), where

$$
M=(A \cdot B \cdot C)^{-1}-\left(B^{t} \cdot C\right)^{-1}+C^{-1} \cdot\left[\left(B^{-1}+C^{t}\right)^{t}-(A \cdot B)^{-1}\right]
$$

4.- Given the matrix $A=\left(\begin{array}{lll}1 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & 5\end{array}\right)$
(i) Decide whether A is row equivalent to the identity matrix.
(ii) Give a matrix of rank 2 that is NOT row equivalent to A.
(iii) Give a diagonal matrix congruent to A.
(iv) Is there a diagonal matrix which is column equivalent to A ? Justify your answer.
5.- For each $a \in \mathbb{R}$ we consider the following subsets of \mathbb{R}^{4} :

$$
U=\left\{(x, y, z, t) \in \mathbb{R}^{4} \mid x+y-z-t=0, x+y+z+t=0\right\}, \quad V=\mathcal{L}\{(1,1,0,0),(1,1, a, 1),(0,0,2,1)\}
$$

(i) Obtain $\operatorname{dim}(U), \operatorname{dim}(V), \operatorname{dim}(U+V)$ and $\operatorname{dim}(U \cap V)$ in terms on the values of a.
(ii) For $a=2$, decompose the vector $(2,2,3,0)$ as the sum of a vector in U and another one in V. Is the decomposition unique?
(iii) For $a=1$ give the implicit equations of a vector subspace W such that V and W are supplementary. (1.4 points)
6.- Justify the truth or falsehood of the following assertions:
(i) There is a base of $\mathcal{M}_{2 \times 2}(\mathbb{R})$ formed by four invertible matrices.
(ii) If $U, V \subset \mathbb{R}^{n}$ are vector subspaces, $\operatorname{dim}(U)=\operatorname{dim}(V)=70$ and $\operatorname{dim}(U \cap V)=40$ then $n \geq 100$.
(iii) $\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z \geq 0\right\}$ is a vector subspace of \mathbb{R}^{3}.
(iv) If $A, B \in \mathcal{M}_{4 \times 4}(\mathbb{R})$ and $\operatorname{rank}(A B)=4$ then $\operatorname{rank}(A)=4$.
7.- Let $\mathcal{P}_{2}(\mathbb{R})$ be the vector space of all polynomials with degree less or equal to 2 . Let $f: \mathcal{P}_{2}(\mathbb{R}) \rightarrow \mathcal{P}_{2}(\mathbb{R})$ be an endomorphism such that

$$
f(1)=2, \quad \operatorname{ker}(f)=\left\{p(x) \in \mathcal{P}_{2}(\mathbb{R}) \mid p(1)=0\right\}
$$

(i) Find the matrix associated to f relative to the canonical basis.
(ii) Find the implicit equations of $\operatorname{Im}(f)$ relative to the canonical basis.
(ii) Find $f\left((x+1)^{2}\right)$.
(1.1 points)
8.- Consider the endomorphism

$$
f: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}, \quad f(x, y, z, t)=(x+2 y+t, 2 x+y+t,-z+2 t, t)
$$

(i) Find its eigenvalues and eigenvectors.
(ii) Give a basis B and a diagonal matrix D such that $F_{B}=D$, if they exist.
(iii) Compute trace $\left(F_{C}^{9}\right)$.
(iv) Let us define $g: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}, g(x, y, z, t)=(x+y+z+t, x+y-z-t)$. Find the matrix associated to $g \circ f$ with respect to the canonical bases of \mathbb{R}^{4} and \mathbb{R}^{2}.
(1.4 points)
9.- Consider the linear mapping $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, f(x, y)=(x+y, x+y)$ Can f be the projection mapping onto some subspace along another one?. Justify your answer.
(0.8 points)

