TABLA DE TRANSFORMADAS DE LAPLACE

$\mathbf{F}(g) = \mathbf{C}[f(x)]$	f(+)
$F(s)=\mathcal{L}[f(t)]$	f(t)
$\frac{1}{s}$	1
$\frac{1}{s^n} (n \in \mathbb{N})$	$\frac{t^{n-1}}{(n-1)!}$
$\frac{1}{\sqrt{s}}$	$\frac{1}{\sqrt{\pi t}}$
$\frac{1}{s^a}$ $(a>0)$	$rac{t^{a-1}}{\Gamma(a)}$
$\frac{1}{s-a}$	e^{at}
$\frac{1}{(s-a)^k} (k>0)$	$rac{t^{k-1}}{\Gamma(k)}e^{at}$
$\frac{1}{s^2-a^2}$	$\frac{1}{a}\mathrm{Sh}(at)$
$\frac{s}{s^2-a^2}$	$\operatorname{Ch}(at)$
$\frac{1}{(s-a)^2+\omega^2}$	$\frac{e^{at}\sin(\omega t)}{\omega}$
$\frac{s-a}{(s-a)^2+\omega^2}$	$e^{at}\cos(\omega t)$
$\frac{1}{(s^2+\omega^2)^2}$	$\frac{\sin(\omega t) - \omega t \cos(\omega t)}{2\omega^3}$
$\frac{s}{(s^2+\omega^2)^2}$	$\frac{t\sin(\omega t)}{2\omega}$
$\frac{s^2}{(s^2+\omega^2)^2}$	$\frac{t\sin(\omega t) + \omega t\cos(\omega t)}{2\omega}$
$\frac{s}{(s^2+a^2)(s^2+b^2)}$ $(a^2 \neq b^2)$	$\frac{\cos(at) - \cos(bt)}{b^2 - a^2}$
$\frac{1}{\sqrt{s^2+a^2}}$	$J_0(at)$
$\frac{e^{-as}}{s}$	u(t-a)
e^{-as}	$\delta(t-a)$