
DIBs and Their Use
Ron Gery
Microsoft Developer Network Technology Group

Created: March 20, 1992

Abstract

This article discusses the DIB (device-independent bitmap) concept from definition and structure 
to the API that uses it. Included is a small sample application that illustrates some of the most 
common methods of using DIBs to display and manipulate digital images. Functions discussed 
are GetDIBits, SetDIBits, CreateDIBitmap, SetDIBitsToDevice, StretchDIBits, and 
CreateDIBPatternBrush. This article does not discuss using palettes with DIBs.

Overview
A DIB (device-independent bitmap) is a format used to define device-independent bitmaps in 
various color resolutions. The main purpose of DIBs is to allow bitmaps to be moved from one 
device to another (hence, the device-independent part of the name). A DIB is an external format, 
in contrast to a device-dependent bitmap, which appears in the system as a bitmap object 
(created by an application using CreateBitmap, CreateCompatibleBitmap, 
CreateBitmapIndirect, or CreateDIBitmap). A DIB is normally transported in metafiles (usually 
using the StretchDIBits function), BMP files, and the Clipboard (CF_DIB data format).

A DIB consists of two parts: the bits themselves and a header that describes the format of the 
bits. The header contains the color format, a color table, and the size of the bitmap. The current 
DIB format supports four color resolutions: 1 bit, 4 bit, 8 bit, and 24 bit. In 1-bit, 4-bit, and 8-bit 
DIBs, the pixels are defined by indexes (of the appropriate bit resolution) into the color table; 
24-bit pixels are described as 24-bit values, 1 byte each for red, green, and blue.

The DIB functions are:

GetDIBits Translates a device-dependent bitmap into the DIB format

SetDIBits Translates a DIB's information into device-dependent form

CreateDIBitmap Creates a device-dependent bitmap initialized with DIB information

SetDIBitsToDevice Sets a DIB directly to the output surface

StretchDIBits Moves a rectangle from the DIB to a rectangle on the destination surface, 
stretching or compressing as necessary

CreateDIBPatternBrush Creates a pattern brush using a DIB for the bitmap description

Device Independence--What's It Good For?

Transferring color bitmaps from one device to another was not possible in versions of the 
Microsoft® Windows™ graphical environment earlier than 3.0. With DIBs, each device displays 
the image to the ability of its color resolution. An application can store an image in the DIB format 
and then display it, regardless of the output device; an application need no longer create a 
version of each image for each type of device.

This image transfer ability can be used to print halftone images. For example, the StretchDIBits 
function can pass a DIB directly to an intelligent printer driver. Given the full color information of 



the image instead of simply a monochrome version (the traditional method), the driver can use 
halftones to print a realistic picture.

Because the DIB format is publicly defined, an application can manipulate it on the fly. In fact, an 
application can build an image without any interaction with Windows. If Windows lacks a drawing 
primitive, the application can simulate it directly into the DIB instead of using the existing 
graphics device interface (GDI) primitives. Unfortunately, under Windows versions 3.0 and 3.1, 
GDI cannot perform output operations directly to a DIB.

BMP File Formats

The file extension of a Windows DIB file is BMP. The file consists of a BITMAPFILEHEADER 
structure followed by the DIB itself. Unfortunately, because the BITMAPFILEHEADER structure 
is never actually passed to the API, not every application that generates BMP files fills out the 
data structure carefully. To add to this confusion, the "proper" definition of the structure is at odds 
with the documentation. Properly, the data structure contains the following fields:

bfType A WORD that defines the type of file. It must be 'BM'.

bfSize A DWORD that specifies the size of the file in bytes. The Microsoft Windows 
Software Development Kit (SDK) documentation claims otherwise. To be on the 
safe side, many applications calculate their own sizes for reading in a file.

bfReserved1, 
bfReserved2

WORDs that must be set to 0.

bfOffBits A DWORD that specifies the offset from the beginning of the BITMAPFILEHEADER 
structure to the start of the actual bits. The DIB header immediately follows the file 
header, but the actual image bits need not be placed next to the headers in the file.

The DIB header immediately follows the BITMAPFILEHEADER structure.

For a code sample that reads a BMP file, see the sample program.

The DIB Header

The header actually consists of two adjoining parts: the header proper and the color table. Both 
are combined in the BITMAPINFO structure, which is what all DIB APIs expect.

Windows supports two varieties of headers: BITMAPINFOHEADER and 
BITMAPCOREHEADER. If at all possible, applications should use only BITMAPINFOHEADER
s. The BITMAPCOREHEADER definition is based on the bitmap definition from Presentation 
Manager™ version 1.1 and is supported for compatibility.

During a DIB setting operation, most fields are already filled in by whoever generated the DIB. 
Doing a GetDIBits call, however, provides more control. The way the header is filled in for this 
operation defines the resulting DIB, particularly its color resolution.

BITMAPINFOHEADER contains the following fields:

biSize Should be set to sizeof(BITMAPINFOHEADER). This field defines the size of the 
header (minus the color table). If a new DIB definition is added, it is identified by 
a new value for the size. This field is also convenient for calculating a pointer to 
the color table, which immediately follows the BITMAPINFOHEADER.

biWidth, biHeight Define the width and the height of the bitmap in pixels. They are DWORD values 
for future expansion, and the code in Windows versions 3.0 and 3.1 ignores the 
high word (which should be set to 0).

biPlanes Should always be 1. All DIB definitions rely on biBitCount for defining the color 



resolution.

biBitCount Defines the color resolution (in bits per pixel) of the DIB. Only four values are 
valid for this field: 1, 4, 8, and 24. New resolutions (16 bit, for example) may be 
added in the future, but for now only these four define a valid DIB. Choosing the 
appropriate value when doing a GetDIBits is discussed below. When performing 
a Set operation, the value should already be defined for the bits.

biCompression Specifies the type of compression. Can be one of three values: BI_RGB, 
BI_RLE4, or BI_RLE8. The most common and useful choice, BI_RGB, defines a 
DIB in which all is as it seems. Each block of biBitCount bits defines an index 
(or RGB value for 24-bit versions) into the color table. The other two options 
specify that the DIB is stored (or will be stored) using either the 4-bit or the 8-bit 
run length encoding (RLE) scheme that Windows supports. The RLE formats are 
especially useful for animation applications and also usually compress the 
bitmap. BI_RGB format is recommended for almost all purposes. RLE versions, 
although possibly smaller, are slower to decode, not as widely supported, and 
extremely painful to band properly.

biSizeImage Contains the size of the bitmap proper in bytes or the value 0. A value of 0 
indicates that the DIB is of default size. Calculating the size of a bitmap is not 
hard:

biSizeImage = ((((biWidth * biBitCount) + 31) &
              ~31) >> 3) * biHeight:

The crazy roundoffs and shifts account for the bitmap being DWORD-aligned at 
the end of every scanline. When nonzero, this field tells an application how much 
storage space the DIB's bits need. The biSizeImage field really becomes useful 
when dealing with an RLE bitmap, the size of which depends on how well the 
bitmap was encoded. If an RLE bitmap is to be passed around, the biSizeImage 
field is mandatory.

biXPelsPerMeter, 
biYPelsPerMeter

Define application-specified values for the desirable dimensions of the bitmap. 
This information can be used to maintain the physical dimensions of an image 
across devices of different resolutions. GDI never touches these fields. When 
not filled in, they should both be set to 0.

biClrUsed Provides a way for getting smaller color tables. When this field is set to 0, the 
number of colors in the color table is based on the biBitCount field (1 indicates 
2 colors, 4 indicates 16, 8 indicates 256, and 24 indicates no color table). A 
nonzero value specifies the exact number of colors in the table. So, for example, 
if an 8-bit DIB uses only 17 colors, then only those 17 colors need to be defined 
in the table, and biClrUsed is set to 17. Of course, no pixel can have an index 
pointing past the end of the table.

Note:

This field cannot be used during a GetDIBits operation. GDI always 
fills a full-size color table. The field is therefore more useful for 
post-processing operations, when an application trims down the 
contents of the DIB. If nonzero for a 24-bit DIB, it indicates the 
existence of a color table that the application can use for color 
reference.

biClrImportant Specifies that the first x colors of the color table are important to the DIB. If the 
rest of the colors are not available, the image still retains its meaning in an 
acceptable manner. biClrImportant is purely for application use; GDI does not 
touch this value. When this field is set to 0, all the colors are important, or, 
rather, their relative importance has not been computed.

The color table immediately follows the header information. No color table is defined for 24-bit 
DIBs. The table consists of an array of RGBQUAD data structures. (The table for the 
BITMAPCOREINFO format is built with the RGBTRIPLE data structure.) Red, green, and blue 



bytes are in reverse order (red swaps position with blue) from the Windows convention. This is 
another leftover from Presentation Manager compatibility.

The size of the color table depends on the biBitCount value (and can be overwritten using the 
biClrUsed field; see above):

if (!(nNumColors = biClrUsed))
{
   if (biBitCount != 24)
      nNumColors = 1 << biBitCount;
}
nTableSize = nNumColors * sizeof(RGBQUAD);

Most DIBs floating around currently have biClrUsed set to 0, but if any full-fledged DIB bashing 
is planned, it is a good idea to set it properly. If biClrUsed is nonzero, a color table with 24-bit 
DIBs is possible. GDI does not use this color table, but the application can use it to determine 
the important colors used in the DIB.

All DIB functions include a wUsage parameter, which can affect the definition of the color table. 
This article avoids using palettes with DIBs and thereby assumes that wUsage is always set to 
DIB_RGB_COLORS and that the color table is therefore always composed of RGB values. 
When DIB_PAL_COLORS is used, the color table consists of WORD values that are indexes 
into the currently selected logical palette. (This topic is discussed in detail in the "Using DIBs with 
Palettes" article.) 

Bit Formats

The header defines the format of the bits, but all formats share the following rules:

Every scanline is DWORD-aligned. The scanline is buffered to alignment; the buffering is 
not necessarily 0.

The scanlines are stored upside down, with the first scan (scan 0) in memory being the 
bottommost scan in the image. (See Figure 1.) This is another artifact of Presentation 
Manager compatibility. GDI automatically inverts the image during the Set and Get 
operations.

Figure 1.

64K segment boundaries are not respected; scanlines can cross such boundaries (unlike 
the device-dependent bitmap format that is buffered to 64K boundaries).

Each format has the following specifics:

1-bit DIBs are stored using each bit as an index into the color table. The most significant 
bit is the leftmost pixel.

4-bit DIBs are stored with each 4 bits representing an index into the color table. The most 



significant nibble is the leftmost pixel.

8-bit DIBs are the easiest to store because each byte is an index.

24-bit DIBs have every 3 bytes representing a color, using the same ordering as the color 
table. This format is especially tricky during processing because a 64K boundary can exist 
in the middle of a color triple—an ugly condition that must be handled with care.

Using the DIB API
GetDeviceCaps (hDC, RASTERCAPS) returns a WORD value with flags set indicating which 
DIB functions the driver supports. RC_DI_BITMAP indicates support of GetDIBits and SetDIBits
, RC_DIBTODEV indicates support of SetDIBitsToDevice, and RC_STRETCHDIB indicates 
support of StretchDIBits. Any function not supported can be simulated, although the simulations 
are often not as useful as the real thing (mainly because color information is lost). A device may 
be unable to support the full functionality even if a bit is set. For example, a device could support 
StretchDIBits but only for integral stretches. Unfortunately, an application has no way to 
determine the completeness of the implementation. In these cases, GDI simulates the function.

GetDIBits and SetDIBits

These two functions are used to convert device-independent bitmaps into device-dependent 
bitmaps and vice versa. SetDIBits converts a DIB to a device-dependent bitmap, and GetDIBits 
generates a DIB from a device-dependent bitmap.

The device driver referenced by the hDC passed into both calls performs the actual translation. 
Some device drivers may not have this functionality (for example, a Windows version 2.0 driver 
or a primitive Windows version 3.0 driver). In this case, GDI simulates the translation, but only in 
monochrome—color information is converted to black and white. For the most part, though, this 
is not a concern. All self-respecting display drivers support this functionality, and only a few 
printer drivers do not provide the translation, usually monochrome drivers for which the GDI 
simulations suffice.

The parameters are the same for both GetDIBits and SetDIBits:

GetDIBits(hDC, hBitmap, nStartScan, nNumScans, lpBits, lpBitmapInfo, wUsage)

SetDIBits(hDC, hBitmap, nStartScan, nNumScans, lpBits, lpBitmapInfo, wUsage)

where:

hDC The device context (DC) responsible for the translation operation. hDC must be 
compatible with the hBitmap parameter.

hBitmap The device-dependent bitmap from which (Get) or to which (Set) the DIB will be 
translated. Because of how the simulation code operates, this bitmap should not be 
currently selected into any DC.

nStartScan, 
nNumScans

Define the contents of lpBits. For example, a StartScan of 5 indicates that lpBits 
points to the fifth scan of the DIB. A NumScans of 14 indicates that lpBits points to 14 
scans of the DIB. Normally, nStartScan is set to 0 and nNumScans is set to biHeight 
to denote that the whole DIB is pointed to by lpBits.

lpBits The actual bitmap of the DIB. The pixel information is pointed to by this parameter. 

lpBitmapInfo The header (with color table) defining the DIB. The height and width in this header 
must match the height and width of the hBitmap parameter (the translation is always 
one-to-one). The color resolution of the DIB need not match that of hBitmap.

wUsage For the purposes of this article, assume this to be DIB_RGB_COLORS, indicating 
RGB colors in the color table.



Using SetDIBits is reasonably straightforward. A DIB is taken from somewhere (for example, 
from the Clipboard or from a disk file) and is converted to a bitmap object, which can then be 
selected into a DC and blted to the screen for display. This is the simplest way to display a DIB.

Note:

For many printers that can do halftones, this method is not preferred; StretchDIBits (discussed 
below) is far more useful.

The following is a simple display of a DIB to a DC (with no error handling):

HBITMAP hBitmap;
HDC hMemDC;

hBitmap = CreateCompatibleBitmap(hDC, (WORD)lpInfo->biWidth, 
          lpInfo->(WORD)biHeight);
hMemDC = CreateCompatibleDC(hDC);
SetDIBits(hDC, hBitmap, 0, (WORD)lpInfo->biHeight, lpBits, 
         lpInfo, DIB_RGB_COLORS);
hBitmap = SelectObject(hMemDC, hBitmap);
BitBlt(hDC, 0, 0, (WORD)lpInfo->biWidth, (WORD)lpInfo->biHeight, 
      hMemDC, 0, 0, SRCCOPY);
DeleteObject(SelectObject(hMemDC, hBitmap));
DeleteDC(hMemDC);

Using GetDIBits is more complex because the application can choose what kind of DIB to 
generate. The size of the source bitmap regulates the DIB's dimensions (a piece can be 
extracted by blting into a smaller bitmap), but the application's need can dictate the color 
resolution.

For GetDIBits to work properly, the application needs to set the following fields in the header: 

biSize = sizeof(BITMAPINFOHEADER)

biWidth = {width of the bitmap}

biHeight = {height of the bitmap}

biPlanes = 1

biBitCount = {desired color resolution (1, 4, 8, or 24)}

biCompression = BI_RGB          (For RLE information, see below.)

Also, the space allocated for the color table must be sufficient to hold a full-size table:

if (biBitCount != 24)
   nSizeTable = (1 << biBitCount) * sizeof(RGBQUAD)
else
   nSizeTable = 0;

The space allocated for lpBits also needs to be large enough to hold nNumScans of data.

The call fills in the following fields of the structure:

biSizeImage = size in bytes of the DIB data

color table (for non–24-bit case) is filled with appropriate colors

lpBits is filled with the DIB data



If GetDIBits is called with lpBits set to NULL, no bits are returned; only biSizeImage and the 
color table are filled in. This option is useful for DIBs with RLE and is not worthwhile for 
non-encoded DIBs.

The application's goals for the DIB determine what color resolution to choose. The usual 
approach is to generate a DIB that preserves the color information of the source 
device-dependent bitmap. Choosing a lesser resolution results in a loss of color information, 
which is usually undesirable. Always using 24-bit resolution is unnecessary, however, because 
doing so adds no more color resolution if the source has 8-bit or less resolution.

BITMAP bm;
GetObject(hBitmap, sizeof(BITMAP), (LPVOID)&bm);  // get information
                                                  //  on bitmap
BitmapRes = bm.bmPlanes * bm.bmBitsPixel;
if (BitmapRes == 1)
   biBitCount = 1;
else if (BitmapRes <= 4)
   biBitCount = 4;
else if (BitmapRes <= 8)
   biBitCount = 8;
else
   biBitCount = 24;

The bitmap's resolution calculation must take into account that some device-dependent bitmaps 
are planar (notably EGA and VGA). DIBs, on the other hand, are always "packed pixel," with only 
one plane per pixel (biPlanes = 1). 

The nStartScan and nNumScans parameters (a residue of Presentation Manager compatibility) 
are designed to be used for banding. If not enough memory is available to load the entire DIB 
into memory in one piece, lpBits can be made to point to only a portion of the bits. Consider the 
following example:

#define MAXREAD 5
WORD ReadXScans(LPSTR, WORD);      // read up to X scans; return 
                                   //  NumRead
LPSTR lpBits;      // points to a block of memory for MAXREAD scans
LPBITMAPINFOHEADER lpInfo; 
WORD nStart, nNumRead;

for (nStart = 0; nStart >= (WORD)lpInfo->biHeight; )
{
   nNumRead = ReadXScans(lpBits, MAXREAD);
   SetDIBits(hDC, hBitmap, nStart, nNumRead, 
      lpBits,lpInfo,DIB_RGB_COLORS);
   nStart += nNumRead;
}

The Set code takes the given band, translates it, and puts the translated band in its proper 
location, accounting at all times for the upside-down nature of DIBs. Notice how biHeight does 
not change at any time because the band is placed in the bitmap based on the height of the full 
bitmap. nStart is based on the height of the full image (defined by biHeight).

CreateDIBitmap

The following code demonstrates calling CreateDIBitmap with the usual case:

hBitmap = CreateDIBitmap(hDC, lpInfo, CBM_INIT, lpBits, lpInfo, 
          wUsage);

This is equivalent to:



hBitmap = CreateCompatibleBitmap(hDC, (WORD)lpInfo->biWidth, 
          (WORD)lpInfo->biHeight);
SetDIBits(hDC, hBitmap, 0, (WORD)lpInfo->biHeight, lpBits, lpInfo, 
          wUsage);

GDI's implementation skips the SetDIBits part if the third parameter is not set with the 
CBM_INIT flag. This function makes for nice shortcut coding of the conversion from DIB to 
device-dependent bitmap.

SetDIBitsToDevice

SetDIBitsToDevice allows an application to set a DIB directly to a device surface. Because this 
function is a holdout from early development, its interface is not as polished as it could be. 
StretchDIBits is a far more powerful function than SetDIBitsToDevice. StretchDIBits does all 
that SetDIBitsToDevice does and has a nicer interface. SetDIBitsToDevice is limited in the way 
it handles metafiles because it does not scale, and banding with the nStartScan and nNumScans 
parameters is nontrivial at best. StretchDIBits does not allow the banding.

The following code performs the SetDIBitsToDevice functionality on the full bitmap (no banding) 
using StretchDIBits:

StretchDIBits(hDC, x, y, (WORD)lpInfo->biWidth, 
     (WORD)lpInfo->biHeight, 0, 0, (WORD)lpInfo->biWidth, 
     (WORD)lpInfo->biHeight, lpBits, lpInfo, DIB_RGB_COLORS, 
     SRCCOPY)

Assuming that nStartScan is set to 0 and that nNumScans is set to lpInfo->biHeight (that is, no 
banding), the function is basically a BitBlt with SRCCOPY as the ROP and with a DIB as the 
source. SrcX and SrcY are in the DIB's space and are therefore upside down in relation to the 
DC (Y = 0 is at the bottom of the image). 

Dealing with the upside-down DIB is tricky when doing a partial setting. For example, if an 
application wants to get the bottom third of a DIB that is w by h pixels to the device at (x,y), the 
call would look something like the following:

SetDIBitsToDevice(hDC, x, y, w, h/3, 0, h/3, 0, 
      (WORD)lpInfo->biHeight, lpBits, lpInfo, DIB_RGB_COLORS);

A device-dependent bitmap would have a SrcY of 2h/3 for the bottom third, but with the 
upside-down system of the DIB, a SrcY of h/3 points to the proper place relative to Windows 
coordinates.

StretchDIBits

This function is the do-all darling for displaying a DIB on the surface of a device. It is especially 
nice for metafiling and for printing, for which the ability to stretch is important.

The one critical hole in the current implementation of StretchDIBits is that StretchDIBits is 
supported by printer drivers and not by many display drivers. Therefore, using this function 
repeatedly to stretch a DIB to the screen is significantly slower than using SetDIBits (to get a 
device-dependent bitmap) followed by repeated StretchBlt calls.

The implementation of this function in GDI is very straightforward. If the device driver can handle 
the call itself, it does. If not, and the call is one-to-one and the device supports 
SetDIBitsToDevice, the call is converted to a SetDIBitsToDevice call to the driver. (This works 
only with SRCCOPY as the ROP.) If neither of these methods is possible, CreateDIBitmap is 
used to make a device-dependent version of the bitmap, and StretchBlt is called to do the 
actual work.



The parameters for StretchDIBits are basically the same as for StretchBlt (with the source hDC 
replaced by lpBits and lpInfo). This function does not have the nStartScan and the nNumScans 
parameters of the other DIB functions, so lpBits always points to the first scan of the DIB.

When using this function for anything other than full bitmap stretches, remember that all of the 
source coordinates (the ones relating to the DIB) are in an upside-down system. The function will 
appropriately flip the image, but the source rectangle is defined with Y=0 at the bottom and 
extents going up. Fortunately, the x-coordinates use the same conventions as Windows.

Printer drivers that do support this functionality (for example, PSCRIPT and HPPCL) usually use 
a halftone algorithm to output good color images. Therefore, maintaining DIBs at the highest 
meaningful color resolution possible (usually 8 bit) is desirable even if the output device is 
monochrome, because the color information is still useful for good output. Unfortunately, most 
printer drivers do not support any ROP other than SRCCOPY.

CreateDIBPatternBrush

This function allows an application to create a pattern brush by specifying a DIB instead of a 
device-dependent bitmap, as used in the CreatePatternBrush function. A brush created using 
this function is used like any other brush. The DIB is turned into a device-dependent bitmap at 
SelectObject time for use by the device. This brush looks like a standard pattern brush to the 
device.

DIBS in the Clipboard
Two basic mechanisms for placing DIBs in the Clipboard are using the CF_DIB data format or 
placing the DIB into a metafile and using the CF_METAFILEPICT data format.

The CF_DIB format uses a packed DIB, in which the bits follow immediately after the header and 
the color table. When reading or creating a packed DIB, an application must properly calculate 
the size of the color table to ensure that the bits are in the proper place. Because all DIB 
functions expect the DIB as two pointers, one to the header and one to the bits, the bits pointer 
must be calculated before use. (For color table size computations, see the code sample in the 
color table description above.)

The simplest way to place a DIB into a metafile is to use StretchDIBits:

hMetaDC = CreateMetaFile((LPSTR) NULL));
StretchDIBits(hMetaDC, 0, 0, biWidth, biHeight, 0, 0, biWidth, 
     biHeight, lpBits, lpInfo, DIB_RGB_COLORS, SRCCOPY);
hMetafile = CloseMetaFile(hMF);

This approach generates a metafile that when played back displays the DIB to the destination. 
This method also scales the image to fit the current mapping scheme if needed. Using metafiles 
for transfer enables even applications that are not DIB-aware to paste the contents of the 
Clipboard without losing the DIB information.

RLE Formats
When the biCompression field in a DIB's header is set to either BI_RLE4 (for biBitCount = 4) 
or BI_RLE8 (for biBitCount = 8), the image has been run length encoded. A description of the 
encoding schemes can be found in the SDK Reference—Volume 2 manual, in the 
"BITMAPINFOHEADER" section of the "Datatypes and Structures" chapter. The basic scheme 
involves compressing multiple, horizontally adjacent, identical pixels into a run encoding. For 
example, 10 pixels of color index 17 are encoded as a run of length 10 and of index 17. Codes 
for end-of-scan and for delta moves are also provided, in which an X and a Y offset are provided 
for the next pixel.



This type of encoding usually compresses the bitmap and is also useful for creating sprite-type 
animations, in which only a small part of an image changes in each frame. The animation 
capabilities are accomplished by using delta codes to limit the number of pixels actually being 
set. Pixels skipped by a delta move are left untouched.

The main limitations of RLE DIBs are that an application can neither easily determine the size of 
the bitmap in bytes nor point to a certain scanline without decoding the bitmap from the first 
scan. The biSizeImage field is useful in solving the first problem. Decoding, encoding, and 
generally manipulating the RLE format is slower and more complicated than the noncompressed 
(BI_RGB) format. Some applications—for example, Paintbrush—refuse to read RLE DIBs. 
Although all APIs accept them, RLE DIBs will probably not become a universally supported 
format. Also, because of the relative rarity of these formats, some device drivers might not have 
fully tested support for the encoding and decoding processes.

To generate an RLE DIB, GetDIBits is called with biCompression set to the desired type of 
encoding. The amount of memory needed to store the bits is not easily computed. If GetDIBits is 
called with lpBits set to NULL, the amount of memory needed for the bits is returned in 
biSizeImage. A subsequent call with lpBits pointing to a properly sized block of memory returns 
an encoded bitmap.

Translating an RLE DIB into a device-dependent form requires no special processing. Any of the 
Set functions can be used normally with a header containing the proper biSizeImage and 
biCompression values to match the bits.

Shortcomings of DIBS
Probably the biggest limitation of DIBs is that they are slower than device-dependent bitmaps. 
Translating DIBs into a device-dependent form before they can actually be displayed requires 
extra processing, resulting in additional overhead. In an ideal world, a one-to-one StretchDIBits 
would be as fast as a BitBlt. This speed would allow an application to operate effectively in the 
realm of the logical bitmap, with full color and full access to each and every pixel, regardless of 
the physical device's limitations.

DIBs are based in a coordinate system that is upside down relative to Windows, making coding a 
bit frustrating and not intuitive. Always remembering this quirkiness should help limit the number 
of iterations needed to get bitmaps properly lined up.

You can get full color using 24-bit DIBs, but they are very slow to decode, read, and write. This is 
especially true on 8-bit palette devices, in which translation literally can take minutes. Also, the 
sheer size of 24-bit DIBs makes them a bit unwieldy for general use.

DIB-Related Problems in Windows Version 3.0
Metafile recording of StretchDIBits calls that use BITMAPCOREHEADER causes a UAE. 
Convert all headers to the BITMAPINFO style to avoid this problem. This workaround is 
recommended for general DIB processing.

The SetDIBits simulation code for >64K monochrome DIBs causes crashes or erroneous output 
when using SetDIBits, SetDIBitsToDevice, or StretchDIBits to a driver that does not support 
SetDIBits.

(c) 1993 Microsoft Corporation. All rights reserved.


