1.— Estudia la convergencia uniforme y puntual de las siguientes sucesiones funcionales:

a)
$$f_n(x) = \frac{1 - nx^3}{1 + nx^3}$$
, $x \in [0, 1]$ b) $f_n(x) = e^{-n(x - \sqrt{x})^2}$, $x \in [0, 1]$

b)
$$f_n(x) = e^{-n(x-\sqrt{x})^2}, \ x \in [0,1]$$

c)
$$f_n(x) = \frac{\sqrt{nx}}{1 + n^2 x^2}, \ x \in \mathbb{R}$$
 d) $f_n(x) = \frac{x}{e^{2n^2 x^2}}, \ x \in \mathbb{R}$

$$\mathbf{d}) \ f_n(x) = \frac{x}{e^{2n^2x^2}}, \ x \in \mathbb{R}$$

2.— Estudia la convergencia uniforme y puntual de las siguientes series funcionales:

$$\mathbf{a}) \sum_{n=1}^{\infty} \frac{x^n}{n(1+nx^2)}$$

a)
$$\sum_{n=1}^{\infty} \frac{x^n}{n(1+nx^2)}$$
; b) $\sum_{n=1}^{\infty} \frac{1}{n!} (\cos(nx) - \sin(nx))$; c) $\sum_{n=0}^{\infty} \frac{e^{nx}}{3^n}$

$$\mathbf{c}) \sum_{n=0}^{\infty} \frac{e^{nx}}{3^n}$$

3.— Se considera la serie funcional $\sum_{n=0}^{\infty} \frac{1}{n! \, x^n}$, definida en $[1, \infty)$. Se pide estudiar su convergencia uniforme y obtener su función suma.

4.— Calcula el campo de convergencia y la suma de la serie $\sum_{n=0}^{\infty} (n+1)(n+2) x^n$.

5.— Se considera la serie de potencias $f(x) = \sum_{n=1}^{\infty} \frac{x^{4n-1}}{4n-1}$. Se pide:

- a) Calcular su campo de convergencia.
- **b)** Obtener su función suma f(x).

c) A partir de los resultados anteriores, calcular $\sum_{n=1}^{\infty} \frac{1}{(4n-1)2^{4n-1}}$.

6.— Se considera la serie de potencias $f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{4n-1}}{4n}$. Se pide:

- a) Calcular su campo de convergencia.
- **b)** Obtener su función suma f(x).

c) A partir de los resultados anteriores, sumar la serie numérica: $\sum_{n=0}^{\infty} \frac{(-1)^n}{(4n)}$.

7. – Dada la función $f(x) = \frac{1}{2} \ln \left(\frac{1+x^2}{1-x^2} \right), |x| < 1$

- a) Obtén su desarrollo de Taylor en torno a x=0 a partir del desarrollo de $\ln(1+t)$.
- b) Calcula el radio de convergencia del desarrollo en serie de f(x) mediante el criterio de Cauchy-Hadamard. Define el conjunto de valores de x para los que la serie converge.

8.— Estudia la convergencia de la serie numérica $\sum_{n=0}^{\infty} \frac{(1-2n)}{2^n}$ y, en su caso, calcula su suma.

9.— Dada la función $f(x) = \frac{1+x^3}{(1+x)^3}$, se pide calcular su desarrollo en serie de MacLaurin, a partir del desarrollo de $\frac{1}{1+x}$, determinando su radio y campo de convergencia.

10.— Calcula el desarrollo de Mac Laurin de orden 6 de la función $f(x) = \sin^2 x$ de tres maneras:

- a) Aplicando la fórmula de Taylor a f(x).
- b) Utilizando el desarrollo del sen x.
- c) Utilizando el desarrollo de la función $\cos 2x$.

11.— Halla el valor de a para que el siguiente infinitésimo (cuando $x \to 0$) tenga el mayor orden posible y obtén su desarrollo limitado de orden 5.

$$f(x) = \frac{x + ax^3}{1 + x^2} - \sin x$$

12.— Calcula los siguientes límites empleando desarrollos limitados de Taylor:

a)
$$\lim_{x \to 0} \frac{x \cosh x + 3 \sinh x - 4x}{x^3}$$
; b) $\lim_{x \to 0} \left(\frac{\sin x}{x}\right)^{\frac{1}{x}}$

$$\mathbf{b}) \lim_{x \to 0} \left(\frac{\operatorname{sen} x}{x} \right)^{\frac{1}{x}}$$

13.— Sea la ecuación $F(x,y)=y+\ln y-\sin x-1=0$, que define a y como función implícita -diferenciable- de x, en un entorno de x=0. Utilizando el desarrollo limitado de y(x), se pide calcular el siguiente límite:

$$\lim_{x \to 0} \frac{x \left(1 - 2y'\right)}{x - 2\left(y - 1\right)}$$