1.- Determine the volumes obtained by rotating the region bounded by the following curves, about the indicated axes:
a) $y^{2}=8 x ; y=0 ; x=2$.

1. About the x-axis.
2. About the y-axis.
3. About the line $x=2$.
b) $y=2 x-x^{2} ; y=0$.
4. About the x-axis.
5. About the y-axis.
6. About the line $y=2$.
c) $x^{2}+y^{2}=4$, About the line $x=3$.
d) $y=-x^{2}-2 x+3 ; x+y-1=0$.
7. About the line $x=1$.

2 . About the x-axis.
е) $y=\frac{b x^{2}}{a^{2}} ; y=\frac{b|x|}{a} ; a>b>0$.

1. About the x-axis.
2. About the y-axis.
f) $y=\sin x ; y=0 ; x=0 ; x=\pi$.
3. About the x-axis.
4. About the y-axis.
g) $x=t-\sin t, y=1-\cos t, t \in[0,2 \pi] ; y=0$.
5. About the x-axis.
6. About the y-axis.
h) $x=\sin ^{3} t, y=\cos ^{3} t, t \in[0,2 \pi]$.
7. About the x-axis.
8. About the y-axis.
2.- Calculate the volume of the solids bounded by the following surfaces:
a) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
b) $z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} ; z=c$.
c) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}+1=0 ; z=2 c ; z=-2 c$.
d) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1 ; z=c ; z=-c$.
e) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{z^{2}}=1 ; z=0 ; z=a$.
f) $x+y+z^{2}=1$ (in the 1 st octant $)$.
3.- Solve the following problems by integration:
a) Consider a cylinder of axis $O Z$ and circular cross-section of radius 4 m . Obtain the volume enclosed outside the cylinder and inside the surface of equation

$$
\frac{x^{2}}{2}+\frac{y^{2}}{2}=z^{2}
$$

b) In a sphere of radius 5 m . a hole is made in the shape of a circular cylinder of radius 4 m . The axis of the cylindrical drill is a diameter of the sphere. Calculate the volume of the resulting solid.
c) Calculate the volume enclosed between the surfaces S_{1} and S_{2}.

$$
S_{1}: x^{2}+y^{2}-z-1=0 ; \quad S_{2}: x^{2}+y^{2}+z-3=0
$$

d) Consider the paraboloid of equation $x^{2}+y^{2}+z=9$ and the cube with the base on the plane $X Y$ and the center at the point $C(0,0,3)$. Calculate the volume common to both solids.
e) Consider a sphere of radius 2 meters whose center is 4 meters above the horizontal plane. A tank is formed by the part of the sphere situated above the plane $z=3$. The tank is filled with a liquid whose density $\rho(z)$ is a function of height. The thickness of the walls is assumed to be negligible. It is requested to obtain:

1. The integral expression to calculate the mass of the liquid contained in the tank.
2. The volume of the liquid in m^{3}.
f) We want to know the volume and cost of an excavation. The excavated volume is shaped like a truncated cone. Its major base is a circle located on the $X Y$ plane, which corresponds to the ground plane. The excavation is $3 m$ deep and its bottom is horizontal. The equation of the surface of the cone is

$$
x^{2}+y^{2}-(z+5)^{2}=0
$$

The cost per m^{3} of excavation is a function of depth and is given by $f(z)$. It is requested:

1. To obtain the integral expression to calculate the cost of the excavation.
2. Calculate the excavation volume in m^{3}.
