Continuity, derivation and integration of a power series ${ }_{(16.04 .2024)}$

Let $\sum a_{n} x^{n}$ be a power series with radius of convergence $r>0$, and let $S(x)$ be its sum. It is satisfied:
a) $S(x)$ is continuous on $(-r, r)$.
b) $S(x)$ is differentiable on $(-r, r)$ being its derivative $S^{\prime}(x)=\sum n a_{n} x^{n-1}$.
c) $S(x)$ is integrable on $[0, x], \forall x \in(-r, r)$. Its integral is $\int_{0}^{x} S(t) d t=\sum \frac{a_{n}}{n+1} x^{n+1}$.

Proof.

a) We prove it in two parts.
a.1) $\sum a_{n} x^{n}$ converges uniformly on every compact $[-\rho, \rho] \subset(-r, r)$.

Since $0<\rho<r$, the series is absolutely convergent for $x=\rho$. That is, $\sum\left|a_{n} \rho^{n}\right|$ is convergent (Cauchy-Hadamard theorem).
Thus, $\forall x /|x| \leq \rho$, we have that $\left|a_{n} x^{n}\right| \leq\left|a_{n} \rho^{n}\right|$, so $\sum a_{n} x^{n}$ has a majorant which is a convergent numerical series of positive terms. Hence, by Weierstrass's theorem, it is uniformly convergent on $[-\rho, \rho]$.
a.2) For all $x \in(-r, r)$ we can find a ρ such that

$$
-r<-\rho<x<\rho<r
$$

(e.g., if $x>0$, then $\rho=(x+r) / 2)$.

As we have just seen, the series $\sum a_{n} x^{n}$ converges uniformly on $[-\rho, \rho]$. Since the functions $a_{n} x^{n}$ are continuous $\forall x$, the sum $S(x)$ will be continuous $\forall x \in(-r, r)$ (section 2.4.).

Remark: When studying Abel's Theorems, we will see that, if the series converges at $x=r$ or $x=-r, S(x)$ will also be continuous at those points, not only at $(-r, r)$.
b) Let $\sum n a_{n} x^{n-1}$ be the series of the derivatives of $\sum a_{n} x^{n}$. Since

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\left|n a_{n}\right|}=\lim _{n \rightarrow \infty} \sqrt[n]{n} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}
$$

its radius of convergence coincides with that of $\sum a_{n} x^{n}$, both series converge uniformly on the same intervals.
Since $\sum a_{n} x^{n}$ converges at least at $x=0$ and its terms are differentiable functions, then the sum $S(x)$ of $\sum a_{n} x^{n}$ is differentiable on $(-r, r)$ and the derivative of the sum is the sum of the series of derivatives (section 2.6.)

$$
S^{\prime}(x)=\sum n a_{n} x^{n-1}
$$

c) Let $\sum \frac{a_{n}}{n+1} x^{n+1}$ be the series of integrals (between 0 and x). Since the radius of convergence of its derived series $\sum a_{n} x^{n}$ is r, its radius will also be r, as we have just seen.
Since $\sum a_{n} x^{n}$ converges uniformly on $[0, x], \forall x \in(-r, r)$, (section a.1) and its terms are integrable functions, then the sum function $S(x)$ is integrable on $[0, x], \forall x \in(-r, r)$ and it holds (section 2.5.)

$$
\int_{0}^{x} S(t) d t=\sum \frac{a_{n}}{n+1} x^{n+1}
$$

