Sequence of continuous functions (16.042024)

Property. "Let $\left\{f_{n}\right\}$ be a sequence of functions f_{n}, defined on I. If $\left\{f_{n}\right\}$ converges uniformly to f on I and the f_{n} are continuous on I, then f is continuous on I ".

Proof. We have to prove that, for every point a of I, it is satisfied

$$
\begin{equation*}
\forall \varepsilon>0 \exists \delta>0 / 0<|x-a|<\delta \Longrightarrow|f(x)-f(a)|<\varepsilon \tag{1}
\end{equation*}
$$

- From the uniform convergence of the sequence $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ on I we have that

$$
\begin{equation*}
\forall \varepsilon>0 \exists n_{0}(\varepsilon) /\left|f_{m}(x)-f(x)\right|<\frac{\varepsilon}{3}, \forall m \geq n_{0}, \forall x \in I \tag{2}
\end{equation*}
$$

- Since the functions f_{n} are continuous on I, we know that, $\forall a \in I$,

$$
\begin{equation*}
\forall \varepsilon>0 \exists \delta>0 / 0<|x-a|<\delta \Longrightarrow\left|f_{m}(x)-f_{m}(a)\right|<\varepsilon / 3, \forall m \in \mathbb{N} \tag{3}
\end{equation*}
$$

- So, given ε, we obtain $n_{0}(\varepsilon)$ at (2) and choose m such that $m \geq n_{0}$. Now, from ε and the continuity condition (3) of f_{m} at a, we obtain δ.
- Thus, given ε, there exist m and δ such that both conditions are satisfied at the same time. As a result, the condition (1) is satisfied.
Indeed, if $0<|x-a|<\delta$, then

$$
\begin{aligned}
& |f(x)-f(a)|=\left|\left(f(x)-f_{m}(x)\right)+\left(f_{m}(x)-f_{m}(a)\right)+\left(f_{m}(a)-f(a)\right)\right| \leq \\
& \underbrace{\left|f(x)-f_{m}(x)\right|}_{(1)}+\underbrace{\left|f_{m}(x)-f_{m}(a)\right|}_{(2)}+\underbrace{\left|f_{m}(a)-f(a)\right|}_{(3)}<\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon .
\end{aligned}
$$

where

- (1) and (3) are less than $\varepsilon / 3$ by the uniform continuity of $\left\{f_{n}\right\}$.
- (2) is less than $\varepsilon / 3$ by the continuity of f_{m} at a.

