Sequence of continuous functions (16.04.2024)

Property. "Let $\{f_n\}$ be a sequence of functions f_n , defined on I. If $\{f_n\}$ converges uniformly to f on I and the f_n are continuous on I, then f is continuous on I".

Proof. We have to prove that, for every point a of I, it is satisfied

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; / \; 0 < |x - a| < \delta \Longrightarrow |f(x) - f(a)| < \varepsilon \tag{1}$$

- From the uniform convergence of the sequence $\{f_n\}_{n\in\mathbb{N}}$ on I we have that

$$\forall \varepsilon > 0 \ \exists n_0(\varepsilon) \ / \ |f_m(x) - f(x)| < \frac{\varepsilon}{3}, \ \forall m \ge n_0, \forall x \in I$$
(2)

- Since the functions f_n are continuous on I, we know that, $\forall a \in I$,

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; / \; 0 < |x - a| < \delta \Longrightarrow |f_m(x) - f_m(a)| < \varepsilon/3, \; \forall m \in \mathbb{N}$$
(3)

- So, given ε , we obtain $n_0(\varepsilon)$ at (2) and choose m such that $m \ge n_0$. Now, from ε and the continuity condition (3) of f_m at a, we obtain δ .
- Thus, given ε , there exist m and δ such that both conditions are satisfied at the same time. As a result, the condition (1) is satisfied.

Indeed, if $0 < |x - a| < \delta$, then

$$|f(x) - f(a)| = |(f(x) - f_m(x)) + (f_m(x) - f_m(a)) + (f_m(a) - f(a))| \le |f(x) - f_m(x)| + |f_m(x) - f_m(a)| + |f_m(a) - f(a)| \le \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$
(1)
(2)
(3)

where

- (1) and (3) are less than $\varepsilon/3$ by the uniform continuity of $\{f_n\}$.
- (2) is less than $\varepsilon/3$ by the continuity of f_m at a.