Solved exercises of sum of series ${ }_{(22012.2023)}$

a) Decomposition of $\sum a_{n}$ in sum or difference of convergent series..

We use P. 5 of the series: The linear combination of convergent series is convergent and its sum is the l.c. of the sums. If, when decomposing the general term of a series, it results $a_{n}=b_{n} \pm c_{n}$, where b_{n} and c_{n} correspond to convergent series of sums S_{b} and $S_{c}, \sum a_{n}$ will be a linear combination of $\sum b_{n}$ and $\sum c_{n}$. Hence its sum will be $S_{a}=S_{b} \pm S_{c}$.

Exercise 1.- Calculate $\sum_{n=1}^{\infty} \frac{2 n^{2}+2 n+1}{n^{2}(n+1)^{2}}$, knowing that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$.
We descompose $2 n^{2}+2 n+1=n^{2}+2 n+1+n^{2}=(n+1)^{2}+n^{2} \Longrightarrow a_{n}=\frac{1}{n^{2}}+\frac{1}{(n+1)^{2}}$.
Then $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}+\sum_{n=1}^{\infty} \frac{1}{(n+1)^{2}}=\frac{\pi^{2}}{6}+\frac{\pi^{2}}{6}-1=\frac{\pi^{2}}{3}-1$.
Exercise 2.- Calculate $\sum_{n=1}^{\infty} \frac{2 n+1}{n^{2}(n+1)^{2}}$. We see that $a_{n}=\cdots=\frac{1}{n^{2}}-\frac{1}{(n+1)^{2}}$.
Hence $\sum_{n=1}^{\infty} \frac{2 n+1}{n^{2}(n+1)^{2}}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}-\sum_{n=1}^{\infty} \frac{1}{(n+1)^{2}}=\frac{\pi^{2}}{6}-\left(\frac{\pi^{2}}{6}-1\right)=1$.
Remark 1.: In both exercises it is easy, before decomposing the general term, to see that the series converges ($a_{n} \sim \frac{2}{n^{\alpha}}$ with $\alpha>1$). But it is not essential to do so, since both decompose into sum or difference of convergents, then they will be convergent.

Remark 2.: Exercise 2 can also be solved as a telescopic series.

b) Decomposition of a_{n} in sum or difference of divergent series.

If several of the terms into which a_{n} is decomposed correspond to divergent series, we cannot sum them separately, but we must study a partial sum of a_{n}. In the following example the harmonic series is used.

Exercise 3.- Find the sum of $\sum_{n=2}^{\infty} \frac{n+2}{n^{3}-n}$. Decomposing a_{n} : $a_{n}=\frac{3 / 2}{n-1}-\frac{2}{n}+\frac{1 / 2}{n+1}$.
We operate in the partial sum and calculate its limit:
$S_{n}=\sum_{i=2}^{n}\left(\frac{3 / 2}{n-1}-\frac{2}{n}+\frac{1 / 2}{n+1}\right)=\frac{3}{2} \sum_{i=2}^{n} \frac{1}{i-1}-2 \sum_{i=2}^{n} \frac{1}{i}+\frac{1}{2} \sum_{i=2}^{n} \frac{1}{i+1}=$
$\frac{3}{2}\left(\frac{1}{1}+\frac{1}{2}+\cdots+\frac{1}{n-1}\right)-2\left(\frac{1}{2}+\cdots+\frac{1}{n}\right)+\frac{1}{2}\left(\frac{1}{3}+\cdots+\frac{1}{n+1}\right)=$
$\frac{3}{2}\left(H_{n}-\frac{1}{n}\right)-2\left(H_{n}-1\right)+\frac{1}{2}\left(H_{n}-1-\frac{1}{2}+\frac{1}{n+1}\right)=$
$\left(\frac{3}{2}-2+\frac{1}{2}\right) H_{n}-\frac{3}{2} \frac{1}{n}+2-\frac{1}{2} \frac{3}{2}+\frac{1}{2} \frac{1}{n+1}=-\frac{3}{2 n}+\frac{5}{4}+\frac{1}{2 n+2} \Longrightarrow \lim _{n \rightarrow \infty} S_{n}=\frac{5}{4}$
Proposed exercise: Obtain $\sum_{n=2}^{\infty} \frac{1}{n^{3}-n}$. Solution: $S=\frac{1}{4}$.

