Unit III. Lessons distribution and self-assessment questions

- Lesson 1. Sections 1 to 4.
 - 1. Does the series of general term $a_n = (-1)^n n$ diverge or oscilate?
 - 2. What is the sum of the geometric series of ratio r = 1/2 and $a_1 = 1$?
 - 3. Does the geometric series converge if the ratio is less than 1?
 - 4. Can we group terms in a series without affecting convergence?
 - 5. What type of series never oscillate?
- Lesson 2. Sections 5 to 6.4.
 - 1. In which property of the sequences is based the Cauchy's criterion of convergence?
 - 2. What characterizes the sequence of partial sums of a series of positive terms?
 - 3. The Riemann series are of the form $\sum 1/n^{\alpha}$, with $\alpha \in \mathbb{R}$. True or false?
 - 4. To calculate the sum of $\sum a_n$, can we replace a_n for an equivalent infinitesimal?
 - 5. In the root test, if the limit is equal to 1, it is an inconclusive case. True or false?
- Lesson 3. Sections 6.5 to 6.8.
 - 1. Is it true that the quotient test and the root test give always the same result?
 - 2. To study the convergence of a S.P.T., when would you use Raabe's test? Why?
 - 3. Is it necessary to use the logarithmic criterion to study the convergence of $\sum 1/\ln n$?
 - 4. What has to do the logarithmic test and the Riemann series?
 - 5. The condensation test is usually the first option to study convergence, since it solves most of the cases. True or false?
- Lesson 4. Section 7.
 - 1. If all the terms of a series are negative, except a finite number of them, can we apply to this series the criteria for S.P.T.?
 - 2. Find a series of positive and negative terms, which is unconditionally divergent.
 - 3. Consider a S.P.N.T. whose positive and negative subseries are divergent. We can rearrange it so that it is divergent only if $a_n \to 0$. True or false?
 - 4. What is the first step that we should take in the study of a S.T.P.N?
 - 5. Every alternating series whose general term tends to zero is convergent. True or false?
- Lesson 5. Section 8.
 - 1. To calculate the sum of a series, is it essential to study its convergence first?
 - 2. After decomposing a_n into simple fractions, in which cases can we sum the resulting series separately?
 - 3. Expand the expressions I_{2n} and P_{2n-1} .
 - 4. For what values of $\alpha \in \mathbb{R}$ does the series $\sum P_k(n) \alpha^n / n!$ converge?
 - 5. Can the series $\sum 1/2^n$ be considered as hypergeometric with $\alpha = 0, \beta = 1, \gamma = 2$?