Search of constrained extrema. Example ${ }_{\left(23.011^{123)}\right.}$

We want to obtain the extremes of the function $V=x+y+2 z$ with the conditions:

$$
3 x^{2}+y^{2}=12 ; \quad x+y+z=2
$$

- Lagrangian function: $L=V+\lambda g_{1}+\mu g_{2}=x+y+2 z+\lambda\left(3 x^{2}+y^{2}-12\right)+\mu(x+y+z-2)$.
- Necessary condition of extremum:

$$
\begin{align*}
& \frac{\partial L}{\partial x}=1+6 x \lambda+\mu=0 . \tag{1}\\
& \frac{\partial L}{\partial y}=1+2 y \lambda+\mu=0 . \tag{2}\\
& \frac{\partial L}{\partial z}=2+\mu=0 . \tag{3}\\
& g_{1}=3 x^{2}+y^{2}-12=0 . \tag{4}\\
& g_{2}=x+y+z-2=0 . \tag{5}
\end{align*}
$$

Subtracting (1) to (2) and considering that $\lambda \neq 0$, we obtain: $y=3 x$.
From (3) we get the value $\mu=-2$.
Introducing $y=3 x$ in (4) and (5) we obtain two possible extremes, each corresponding to a value of $\lambda: P_{1}(1,3,-2), \lambda_{1}=1 / 6 ; \quad P_{2}(-1,-3,6), \lambda_{2}=-1 / 6$.

- The Hessian matrix at these points are:

$$
H_{P_{1}}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 / 3 & 0 \\
0 & 0 & 0
\end{array}\right) \Rightarrow \mathrm{PSD} ; \quad H_{P_{2}}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 / 3 & 0 \\
0 & 0 & 0
\end{array}\right) \Rightarrow \mathrm{NSD}
$$

Since they are semidefinite matrices, we study the second differential, $\left.d^{2} L\right|_{d g_{i}=0}$.

- Point P_{1} :

$$
\begin{align*}
& d^{2} L=d x^{2}+\frac{1}{3} d y^{2} . \tag{6}\\
& d g_{1}=0 \Longrightarrow 6 x d x+2 y d y \stackrel{P_{1}}{=} 6 d x+6 d y=0 \Longrightarrow d x+d y=0 . \tag{7}\\
& d g_{2}=0 \Longrightarrow d x+d y+d z=0 . \tag{8}
\end{align*}
$$

From (7) and (8) it follows that $d z=0$, so either $d x$ or $d y$ (at least one of them) will be non-null. Then expression (6) is always positive, hence there is a minimum at P_{1}.

- Point P_{2} :

$$
\begin{align*}
& d^{2} L=-d x^{2}-\frac{1}{3} d y^{2} \tag{9}\\
& d g_{1}=0 \Longrightarrow 6 x d x+2 y d y \stackrel{P_{2}}{=}-6 d x-6 d y=0 \Longrightarrow d x+d y=0 \tag{10}\\
& d g_{2}=0 \Longrightarrow d x+d y+d z=0 \tag{11}
\end{align*}
$$

From (10) and (11) it follows that $d z=0$, therefore (as with P_{1}) $d x$ or $d y$ will be not null. Then the expression (9) is always negative, hence there is a maximum at P_{2}.

