
Implicit function theorem. Examples (01.01.2023)

1.- Given the function g(x, y, z) = z3 + 2xyz + x, we want to prove that the equation g = 0
defines z as an implicit function z = ψ(x, y) on a neighborhood of P (1,−1, 1), as well as
to obtain the equation of the tangent plane to the surface z = ψ(x, y) at this point.

a) Since g is a polynomial, the function and its derivatives are continuous:
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b) The function verifies g(1,−1, 1) = 0 and
∂g

∂z
(1,−1, 1) = 1 6= 0.

Hence there exists z = ψ(x, y), differentiable on a neighborhood of P (see section 10.2).

From the derivatives of g, we obtain the derivatives of ψ with respect to x and y:
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which allow us to find the equation of the tangent plane:

z = ψ|P +
1

1!
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= 1 + (x− 1)− 2(y + 1).

2.- Given g1(x, y, z) = x2 + xy + z and g2(x, y, z) = x + y2 − z2, we want to prove that the
equation ~g = ~0 defines the implicit functions y = ψ1(x), z = ψ2(x) on a neighborhood of
P (−1, 1, 0). We will also find the derivatives at P of ψ1 and ψ2 with respect to x.

a) P. derivatives:
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b) Since g1 and g2 are polynomials, they and their partial derivatives with respect to
x, y and z are continuous.

c) It holds that: ~g|P = ~0;
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Then there exists the implicit function ~ψ(x), differentiable (section 10.3), and it holds:
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Remark. This result can also be obtained by solving a system of equations:

g1
(
x, ψ1(x), ψ2(x)

)
= φ1(x) = 0; g2

(
x, ψ1(x), ψ2(x)

)
= φ2(x) = 0. Deriving φ1 and φ2:
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