Implicit function theorem. Examples (01.01.2023)

1.- Given the function $g(x, y, z)=z^{3}+2 x y z+x$, we want to prove that the equation $g=0$ defines z as an implicit function $z=\psi(x, y)$ on a neighborhood of $P(1,-1,1)$, as well as to obtain the equation of the tangent plane to the surface $z=\psi(x, y)$ at this point.
a) Since g is a polynomial, the function and its derivatives are continuous:

$$
\frac{\partial g}{\partial x}=2 x y+1, \quad \frac{\partial g}{\partial y}=2 x z, \quad \frac{\partial g}{\partial z}=3 z^{2}+2 x y
$$

b) The function verifies $g(1,-1,1)=0$ and $\frac{\partial g}{\partial z}(1,-1,1)=1 \neq 0$.

Hence there exists $z=\psi(x, y)$, differentiable on a neighborhood of P (see section 10.2).
From the derivatives of g, we obtain the derivatives of ψ with respect to x and y :

$$
\left.\frac{\partial g}{\partial x}\right|_{P}=-1,\left.\quad \frac{\partial g}{\partial y}\right|_{P}=\left.2 \Longrightarrow \frac{\partial \psi}{\partial x}\right|_{P}=-\left.\left(\frac{\partial g}{\partial z}\right)^{-1} \frac{\partial g}{\partial x}\right|_{P}=1,\left.\quad \frac{\partial \psi}{\partial y}\right|_{P}=-\left.\left(\frac{\partial g}{\partial z}\right)^{-1} \frac{\partial g}{\partial y}\right|_{P}=-2,
$$

which allow us to find the equation of the tangent plane:
$z=\left.\psi\right|_{P}+\frac{1}{1!}\left(\left.\frac{\partial \psi}{\partial x}\right|_{P}(x-1)+\left.\frac{\partial \psi}{\partial y}\right|_{P}(y+1)\right)=1+(x-1)-2(y+1)$.
2.- Given $g_{1}(x, y, z)=x^{2}+x y+z$ and $g_{2}(x, y, z)=x+y^{2}-z^{2}$, we want to prove that the equation $\vec{g}=\overrightarrow{0}$ defines the implicit functions $y=\psi_{1}(x), z=\psi_{2}(x)$ on a neighborhood of $P(-1,1,0)$. We will also find the derivatives at P of ψ_{1} and ψ_{2} with respect to x.
a) P. derivatives: $\frac{\partial g_{1}}{\partial x}=2 x+y, \frac{\partial g_{1}}{\partial y}=x, \frac{\partial g_{1}}{\partial z}=1, \frac{\partial g_{2}}{\partial x}=1, \frac{\partial g_{2}}{\partial y}=2 y, \frac{\partial g_{2}}{\partial z}=-2 z$.
b) Since g_{1} and g_{2} are polynomials, they and their partial derivatives with respect to x, y and z are continuous.
c) It holds that: $\left.\vec{g}\right|_{P}=\overrightarrow{0} ; \quad\left|\frac{\partial \vec{g}}{\partial(y, z)}\right|_{P}=\left|\begin{array}{ll}\frac{\partial g_{1}}{\partial y} & \frac{\partial g_{1}}{\partial z} \\ \frac{\partial g_{2}}{\partial y} & \frac{\partial g_{2}}{\partial z}\end{array}\right|_{P}=\left|\begin{array}{rr}-1 & 1 \\ 2 & 0\end{array}\right|=-2 \neq 0$.

Then there exists the implicit function $\vec{\psi}(x)$, differentiable (section 10.3), and it holds:

$$
\left\{\begin{array}{l}
\frac{d \psi_{1}}{d x} \\
\frac{d \psi_{2}}{d x}
\end{array}\right\}_{P}=-\left[\frac{\partial \vec{g}}{\partial(y, z)}\right]^{-1}\left\{\frac{\partial \vec{g}}{\partial x}\right\}_{P}=-\left(\begin{array}{rr}
-1 & 1 \\
2 & 0
\end{array}\right)^{-1}\left\{\begin{array}{r}
-1 \\
1
\end{array}\right\}=\left\{\begin{array}{r}
-1 / 2 \\
1 / 2
\end{array}\right\}
$$

Remark. This result can also be obtained by solving a system of equations:

$$
\begin{aligned}
& \quad g_{1}\left(x, \psi_{1}(x), \psi_{2}(x)\right)=\phi_{1}(x)=0 ; g_{2}\left(x, \psi_{1}(x), \psi_{2}(x)\right)=\phi_{2}(x)=0 . \text { Deriving } \phi_{1} \text { and } \phi_{2}: \\
& \frac{d \phi_{1}}{d x}=\frac{\partial g_{1}}{\partial x}+\frac{\partial g_{1}}{\partial y} \frac{d \psi_{1}}{d x}+\frac{\partial g_{1}}{\partial z} \frac{d \psi_{2}}{d x}=(2 x+y)+x \frac{d \psi_{1}}{d x}+1 \frac{d \psi_{2}}{d x}=0 \\
& \frac{d \phi_{2}}{d x}=\frac{\partial g_{2}}{\partial x}+\frac{\partial g_{2}}{\partial y} \frac{d \psi_{1}}{d x}+\frac{\partial g_{2}}{\partial z} \frac{d \psi_{2}}{d x}=1+2 y \frac{d \psi_{1}}{d x}-2 z \frac{d \psi_{2}}{d x}=0 . \\
& \text { At } P:-1-\left.\frac{d \psi_{1}}{d x}\right|_{P}+\left.\frac{d \psi_{2}}{d x}\right|_{P}=0 ; \quad 1+\left.2 \frac{d \psi_{1}}{d x}\right|_{P}-0=\left.0 \Rightarrow \frac{d \psi_{1}}{d x}\right|_{P}=-\frac{1}{2} ;\left.\quad \frac{d \psi_{2}}{d x}\right|_{P}=\frac{1}{2}
\end{aligned}
$$

