Search of extrema with 2 variables ${ }_{(23.012 .2023)}$

We want to obtain the extrema of the function f on the domain D :

$$
f(x, y)=\sin (x+y)-\cos (x-y), \quad D=\left\{(x, y) \in \mathbb{R}^{2} / 0 \leq x \leq \frac{\pi}{2}, 0 \leq y \leq \frac{\pi}{2}\right\}
$$

1) We first study the interior of the domain ($0<x<\pi / 2,0<y<\pi / 2$). The necessary condition for the existence of an extremum is:

$$
\left.\begin{array}{l}
\frac{\partial f}{\partial x}=\cos (x+y)+\sin (x-y)=0 \\
\frac{\partial f}{\partial y}=\cos (x+y)-\sin (x-y)=0
\end{array}\right\} \Longrightarrow P\left(\frac{\pi}{4}, \frac{\pi}{4}\right)
$$

Sufficient condition: calculating the second derivatives, the Hessian is $H_{P}=\left(\begin{array}{cc}0 & -2 \\ -2 & 0\end{array}\right)$ which corresponds to an undefinite cuadratic form, so it is a saddle point.
2) Study of the border. We consider the points $A(0,0), B(0, \pi / 2), C(\pi / 2,0), D(\pi / 2, \pi / 2)$. In each segment determined by two of them, f becomes a function of one variable. We will first look for points of zero derivative in each segment. Then we will calculate the value at the ends of the segments.
a) On $A C, y=0 \Longrightarrow f=\sin x-\cos x \Longrightarrow f^{\prime}=\cos x+\sin x$.

The equation $f^{\prime}=0$ has no solution for $x \in[0, \pi / 2]$.
b) On $B D, y=\frac{\pi}{2} \Longrightarrow f=\sin \left(x+\frac{\pi}{2}\right)-\cos \left(x-\frac{\pi}{2}\right)=\cos x-\sin x \Longrightarrow f^{\prime}=$ $-\sin x-\cos x$. The equation $f^{\prime}=0$ has no solution for in $x \in\left[0, \frac{\pi}{2}\right]$.
c) On $A B, x=0 \Longrightarrow f=\sin y-\cos y$ (identical to the case a).
d) On $C D, x=\frac{\pi}{2} \Longrightarrow f=\sin \left(\frac{\pi}{2}+y\right)-\cos \left(\frac{\pi}{2}-y\right) \quad$ (identical to the case b).

The values of f at the 4 endpoints are: $f_{A}=f_{D}=-1 ; f_{B}=f_{C}=1$.
3) Then the function f, in the considered domain, has a saddle point at $P\left(\frac{\pi}{4}, \frac{\pi}{4}\right)$, as well as two relative maxima at points B and C and two relative minima at points A and D. These relative extremes are also absolute in the broad sense (\leq).

