Example of a semidefinite cuadratic form

We study the extrema of $f(x, y)=x^{2}+k y^{4}$, depending on the sign of k.
a) Applying the N.C. of extremum, $\nabla f=\overrightarrow{0}$, we obtain the critical point $P(0,0)$.
b) We calculate the second differential at $P(0,0)$. The only non-zero second derivative $\left(f_{x x}^{\prime \prime}\right)$ is equal to 2 , while $f_{x y}^{\prime \prime}=f_{y x}^{\prime \prime}=f_{y y}^{\prime \prime}=0$. Hence $d^{2} f(0,0)=2 d x^{2} \geq 0$ and the second differential of f turns out to be a positive semidefinite quadratic form.
c) However, depending on the sign we give to k, we get different results:
c.1. For $k>0$, the function reaches a relative (and absolute) minimum at $P(0,0)$.
c.2. $k=0$, the function becomes $z=x^{2}$ (a parabolic cylinder), which has a minimum along the line $x=0$, i.e. the $O Y$ axis (the axis corresponds to a generatrix of the cylinder).
c.3. For $k<0$, the function becomes $z=x^{2}-|k| y^{4}$. In this case:

- If, from $P(0,0)$, we move along the X axis, f increases.
- If we do it along the Y axis, the function decreases.

Therefore, at $P(0,0)$, there is neither a maximum nor a minimum (it is a saddle point).
The following figures represent, in this order, the cases $k=1, k=0, k=-1$.

