Jacobian of the inverse function (29.12.2022)

Real functions of one variable. The practical method that we use to obtain the derivative of the function f^{-1}, inverse of f, is the following:

$$
y=f^{-1}(x) \Longrightarrow x=f(y) \Longrightarrow 1=f^{\prime}(y) y^{\prime} \Longrightarrow y^{\prime}=\frac{d f^{-1}(x)}{d x}=\left.\frac{1}{f^{\prime}(y)}\right|_{y=f^{-1}(x)}
$$

That is, "the derivative of the function f^{-1}, inverse of f, is the inverse of the derivative of f ".
Vector functions. We consider a function $\vec{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Its inverse will be $\vec{y}=\vec{f}^{-1}(\vec{x})$, where $\vec{x}=\vec{f}(\vec{y})$. We derive both members with respect to \vec{x}. The first one is the identity function $\vec{\phi}(\vec{x})=\vec{x}$, whose derivative with respect to \vec{x} will be the unit matrix:

$$
\frac{d \vec{\phi}}{d \vec{x}}=\left(\begin{array}{ccc}
\frac{\partial x_{1}}{\partial x_{1}} & \cdots & \frac{\partial x_{1}}{\partial x_{n}} \\
\vdots & & \vdots \\
\frac{\partial x_{n}}{\partial x_{1}} & \cdots & \frac{\partial x_{n}}{\partial x_{n}}
\end{array}\right)=I
$$

We apply the chain rule to the second member, obtaining $\frac{d \vec{f}(\vec{y})}{d \vec{x}}=\frac{d \vec{f}}{d \vec{y}} \frac{d \vec{f}^{-1}}{d \vec{x}}$, so

$$
I=\frac{d \vec{f}}{d \vec{y}} \frac{d \vec{f}^{-1}}{d \vec{x}} \Longrightarrow \frac{d \vec{f}^{-1}}{d \vec{x}}=\left[\frac{d \vec{f}}{d \vec{y}}\right]_{\vec{y}=\vec{f}^{-1}(\vec{x})}^{-1}
$$

That is, "the Jacobian of the inverse function of \vec{f} is the inverse matrix of the Jacobian of \vec{f} ".
Example. Polar and cartesian coordinates. Consider the function $\vec{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

$$
\left\{\begin{array}{l}
\rho \\
\theta
\end{array}\right\}=\vec{f}(x, y) \text { with }\left\{\begin{array}{l}
\rho=f_{1}(x, y)=\sqrt{x^{2}+y^{2}} \\
\theta=f_{2}(x, y)=\operatorname{arctg} \frac{y}{x}
\end{array}\right.
$$

Let its inverse function $\vec{f}^{-1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, be given by $\left\{\begin{array}{l}x \\ y\end{array}\right\}=\vec{f}^{-1}(\rho, \theta)$, with $\left\{\begin{array}{l}x=\rho \cos \theta \\ y=\rho \sin \theta\end{array}\right.$
The Jacobian matrices of \vec{f} and f^{-1} are inverse of each other. The Jacobian of \vec{f}^{-1} is

$$
\frac{d \vec{f}^{-1}}{d(\rho, \theta)}=\left(\begin{array}{ll}
\frac{\partial x}{\partial \rho} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial \rho} & \frac{\partial y}{\partial \theta}
\end{array}\right)=\left(\begin{array}{rr}
\cos \theta & -\rho \sin \theta \\
\sin \theta & \rho \cos \theta
\end{array}\right)
$$

And the Jacobian of f is

$$
\frac{d \vec{f}}{d(x, y)}=\left(\begin{array}{ll}
\frac{\partial \rho}{\partial x} & \frac{\partial \rho}{\partial y} \\
\frac{\partial \theta}{\partial x} & \frac{\partial \theta}{\partial y}
\end{array}\right)=\left(\begin{array}{cc}
\frac{x}{\sqrt{x^{2}+y^{2}}} & \frac{y}{\sqrt{x^{2}+y^{2}}} \\
\frac{-y}{x^{2}+y^{2}} & \frac{x}{x^{2}+y^{2}}
\end{array}\right)
$$

Writing it as a function of the variables (ρ, θ), becomes $\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\frac{\sin \theta}{\rho} & \frac{\cos \theta}{\rho}\end{array}\right)$. It is immediate to verify that the product of both is the unit matrix.

