Jacobian of the inverse function o.12202)

Real functions of one variable. The practical method that we use to obtain the derivative
of the function f~!, inverse of f, is the following:
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That is, “the derivative of the function f~!, inverse of f, is the inverse of the derivative of f”.

Vector functions. We consider a function f :R™ — R". Its inverse will be § = f ~1(Z), where
T = f(y). We derive both members with respect to . The first one is the identity function
o(7) = @, whose derivative with respect to # will be the unit matrix:
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We apply the chain rule to the second member, obtaining
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That is, “the Jacobian of the inverse function of f is the inverse matrix of the Jacobian of f 7.

Example. Polar and cartesian coordinates. Consider the function f : R? — R2
A p=filz,y) = Va* +y?
{9} = f(z,y) with
0 = fo(x,y) = arctg 4
x = pcosb

Let its inverse function f~!:R2 — R2, be given by {x} = f(p,0), with { _
Y y = psinf

The Jacobian matrices of f and f~! are inverse of each other. The Jacobian of f s
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And the Jacobian of f is
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Writing it as a function of the variables (p, ), becomes . It is immediate to
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verify that the product of both is the unit matrix.
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