2.5. Sufficient conditions of integrability (23.10.2022)

a) Every monotonous function on $[a, b]$ is integrable on $[a, b]$.

Proof: Suppose that f is monotone increasing and $f(b)>f(a)$ (if $f(b)=f(a)$, the function would be constant and its integrability would be immediate).
Then, in each subinterval $\left[x_{i-1}, x_{i}\right]_{i=1,2 \ldots n}$, it holds

$$
m_{i}=\inf f(x)=f\left(x_{i-1}\right) ; \quad M_{i}=\sup f(x)=f\left(x_{i}\right)
$$

For all $\varepsilon>0$, we take a partition such that $\Delta x_{i}<\frac{\varepsilon}{f(b)-f(a)}$ and use this value in the Darboux sums. It turns out:

$$
\begin{aligned}
& S(P)-s(P)=\sum_{i=1}^{n}\left(M_{i}-m_{i}\right) \Delta x_{i}<\frac{\varepsilon}{f(b)-f(a)} \sum_{i=1}^{n}\left(M_{i}-m_{i}\right)= \\
& \frac{\varepsilon}{f(b)-f(a)}\left[f\left(x_{n}\right)-f\left(x_{n-1}\right)+f\left(x_{n-1}\right)-f\left(x_{n-2}\right)+\cdots+f\left(x_{1}\right)-f\left(x_{0}\right)\right]=\varepsilon
\end{aligned}
$$

Thus $S(P)-s(P)<\varepsilon$ and the condition of integrability is verified.
b) Every continuous function on $[a, b]$ is integrable on $[a, b]$.

Proof: If f is continuous on $[a, b]$, it is uniformly continuous on $[a, b]$ (Heine's theorem).
Then, given $\varepsilon>0$, it exists a δ such that

$$
\begin{equation*}
\left|x-x^{\prime}\right|<\delta \Longrightarrow\left|f(x)-f\left(x^{\prime}\right)\right|<\frac{\varepsilon}{b-a}, \quad \text { being } x, x^{\prime} \in[a, b] \tag{1}
\end{equation*}
$$

Let $P\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ be a partition of $[a, b]$ such that $\Delta x_{i}<\delta(i=1,2 \ldots n)$. Since f is continuous, in each interval $\left[x_{i-1}, x_{i}\right]$ it will reach a maximum value M_{i} and a minimum value m_{i}, such that

$$
m_{i}=f\left(x_{i}^{\prime}\right) ; M_{i}=f\left(x_{i}^{\prime \prime}\right), \text { being } x_{i}^{\prime}, x_{i}^{\prime \prime} \in\left[x_{i-1}, x_{i}\right]
$$

Since $x_{i}-x_{i-1}=\Delta x_{i}<\delta$, we will also have that

$$
x_{i}^{\prime}-x_{i}^{\prime \prime}<\Delta x_{i}<\delta
$$

So, due to condition (??),

$$
M_{i}-m_{i}=\left|M_{i}-m_{i}\right|=\left|f\left(x_{i}^{\prime \prime}\right)-f\left(x_{i}^{\prime}\right)\right|<\frac{\varepsilon}{b-a}
$$

Therefore, using partition P, it results

$$
S(P)-s(P)=\sum_{i=1}^{n}\left(M_{i}-m_{i}\right) \Delta x_{i}<\frac{\varepsilon}{b-a} \sum_{i=1}^{n} \Delta x_{i}=\frac{\varepsilon}{b-a}(b-a)=\varepsilon
$$

and the condition of integrability is satisfied.
c) Every piecewise continuous function on $[a, b]$ is integrable on $[a, b]$.

We say that a function is piecewise continuous if it has a finite number of points of discontinuity, in they exist one-sided limits, and they are finite.

Proof: It can be seen in J. Burgos, pg. 296.

