Introduction to changes of variable ${ }_{(00.072023)}$

1. Explicit change of variable.

Consider a function $f: I \rightarrow \mathbb{R}$, continuous on $I=[a, b]$, whose primitive we want to obtain. Let $g: J \rightarrow \mathbb{R}$ be a function with continuous derivative and strictly monotone on $J=[c, d]$ (so that it admits inverse). If the image by g of the interval J is contained in I, then we can do the change of variable $x=g(t)$, resulting in

$$
\int f(x) d x=\int f(g(t)) g^{\prime}(t) d t=\left.\int H(t) d t\right|_{t=g^{-1}(x)}
$$

We will carry out the change if this integral is easier to solve than the initial one.
Example. $\int \sqrt{1-x^{2}} d x$. Doing $x=\sin t$, the integral becomes $\int \cos ^{2} t d t$.
Function $x=\sin t$ is strictly monotone on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ or on $\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]$.

2. Implicit change of variable.

Sometimes it is useful to do $h(x)=t$ (or, equivalently, $x=h^{-1}(t)$), so $h^{\prime}(x) d x=d t$.
We write then the integral as

$$
\int f(x) d x=\int \frac{f(x)}{h^{\prime}(x)} h^{\prime}(x) d x, h^{\prime}(x) \neq 0
$$

If $\frac{f(x)}{h^{\prime}(x)}$ can be written in terms of t, the integral becomes $\int G(t) d t$.
Function h must be, as before, strictly monotone and with a continuous derivative.
Here again we will do the change if this integral is easier to solve than the initial one.
Example. $\int x \cos x^{2} d x$. With $t=h(x)=x^{2}, h^{\prime}(x)=2 x$, the integral becomes

$$
\int \frac{x \cos x^{2}}{2 x} 2 x d x=\int \frac{\cos t}{2} d t
$$

In practice there is no need to divide and multiply by $h^{\prime}(x)$. The derivative of h is usually obtained by multiplying and dividing the integrand by an appropriate factor.

$$
\int x \cos x^{2} d x=\frac{1}{2} \int \cos x^{2} 2 x d x \stackrel{x^{2}=t}{=} \frac{1}{2} \int \cos t d t
$$

3. Combination of both methods.

It is common to begin the change of variable as an implicit one by choosing $h(x)$, then solve for $x\left(x=h^{-1}(t)\right)$ and get $d x$ from there.
Example. $\int \frac{x d x}{2-\sqrt[3]{x}}$. We do $2-\sqrt[3]{x}=t \Longrightarrow x=(2-t)^{3}, d x=-3(2-t)^{2} d t$.
The integral becomes $\int \frac{-3(2-t)^{5}}{t} d t$.

Remark. We have imposed the condition of strict monotonicity, to be able to calculate the inverse function. But it is enough that this condition is satisfied piecewise: that is, that the interval J can be decomposed into subintervals, such that the condition is satisfied on all of them.

For example, the function $x=\sin t$ used in paragraph 1 . is not strictly monotone on its domain, but it is so on the indicated intervals of length π.
4. Application. It is proposed to solve the following cases by applying the suggested change. In the case \mathbf{c}), the exercise consists in modifying the integrand to be able to apply the change.
a) Explicit change.

1. $\int \sqrt{x^{2}+\alpha^{2}} d x(x=\alpha \sinh t)$. Sol: $\frac{x}{2} \sqrt{x^{2}+\alpha^{2}}+\frac{\alpha^{2}}{2} \ln \left|x+\sqrt{x^{2}+\alpha^{2}}\right|+C$.
2. $\int \frac{x^{2}}{\sqrt{x^{2}-\alpha^{2}}} d x(x=\alpha \cosh t)$. Sol: $\frac{x}{2} \sqrt{x^{2}-\alpha^{2}}+\frac{\alpha^{2}}{2} \ln \left|x+\sqrt{x^{2}-\alpha^{2}}\right|+C$.
3. $\int \frac{1}{x^{2} \sqrt{\alpha^{2}-x^{2}}} d x \quad(x=\alpha \sin t)$. Sol: $-\frac{1}{\alpha^{2}} \frac{\sqrt{\alpha^{2}-x^{2}}}{x}+C$.
b) Implicit change.
4. $\int \frac{1}{1+\sqrt{x}} d x(1+\sqrt{x}=t)$. Sol: $2(1+\sqrt{x})-2 \ln (1+\sqrt{x})+C$.
5. $\int \frac{e^{x}}{\left(e^{x}+3\right) \sqrt{e^{x}-1}} d x\left(\sqrt{e^{x}-1}=t\right)$. Sol: $\arctan \frac{\sqrt{e^{x}-1}}{2}+C$.
6. $\int \frac{e^{2 x}}{\sqrt{e^{x}+1}} d x\left(\sqrt{e^{x}+1}=t\right)$. Sol: $\frac{2}{3} \sqrt{\left(e^{x}+1\right)^{3}}-2 \sqrt{e^{x}+1}+C$.
c) Turn the integral into an immediate one, by using the suggested change.
7. $\int \frac{\sin x+\cos x}{\sqrt{\sin 2 x}} d x(\sin x-\cos x=t)$. Sol: $\arcsin (\sin x-\cos x)+C$.
8. $\int \frac{x^{2}+1}{x \sqrt{-1+3 x^{2}-x^{4}}} d x\left(x-\frac{1}{x}=t\right)$. Sol: $\arcsin \left(x-\frac{1}{x}\right)+C$.
