Unit III. Lessons distribution and self-assessment questions.

- Lesson 1. Sections 1; 2; 3.
 - 1. If $\{a_n\}$ converges, then it is bounded, and if it does not converge, then it is unbounded. True or false?
 - 2. If $\{a_n\}$ diverges, then it is unbounded; and, if it is bounded, then it does not diverge. True or false?
 - 3. Can $\{a_n\}$ not converge nor diverge nor be bounded? If it can, give an example.
 - 4. Find a convergent subsequence of an oscillating one.
 - 5. Does it exist a monotone sequence increasing and decreasing, but not convergent?
 - 6. Does a sequence of nested, closed, non-empty intervals determine a point?
- Lesson 2. Sections 4; 5.
 - 1. The quotient of convergent sequences converges to the quotient of limits. It is true?
 - 2. If $a_n \to 0$, the limit of the sequence $\{1/a_n\}$ is infinity. True or false?
 - 3. $1^n = 1, \forall n \text{ is true. So, if } a_n \to 1, \text{ will the sequence } \{a_n^n\}$ have limit 1?
 - 4. Given $\{n\}$, calculate the limits of the arithmetic and geometric means of its terms.
 - 5. Given the sequence $\{a_n\}$, is it true that the limit of a_n/a_{n-1} is equal to that of $\sqrt[n]{a_n}$?
- Lesson 3. Sections 6; 7.
 - 1. Find two infinites of the same type, one negligible compared to the other.
 - 2. Find two infinites of different type, one negligible compared to the other.
 - 3. Give an example of non-equivalent infinites of the same order.
 - 4. Give an example of two equivalents infinitesimals.
- Lesson 4. Sections 8; 9.1.
 - 1. In a quotient, can we replace the numerator by an equivalent sequence?
 - 2. In a logarithm, can we replace the argument by an equivalent sequence?
 - 3. If $a_n \sim a'_n$, $b_n \sim b'_n$, then $a_n^{b_n} \sim {a'_n}^{b'_n}$. True or false?
 - 4. The limit of the sequence $\left\{ (1+1/\sqrt{n})^{\sqrt{n}} \right\}$ is number e. True or false?
- Lesson 5. Sections 9.2 a 9.5.
 - 1. Are two polynomials in n, of the same degree, equivalent?
 - 2. Are the logarithms of two polynomials in n, of the same degree, equivalent?
 - 3. Are the nth roots of two polynomials in n, of the same degree, equivalent?
 - 4. To find the limit of a recurrent sequence, it is enough to take limits in the formula. True or false?
 - 5. How are indeterminations of type 0^0 usually resolved?