General term of the sequence of integers (16.07.2022)

There are sequences whose general term has different expressions for even or odd n, for example:

$$
\frac{1}{1}, 2, \frac{1}{3}, 4, \ldots
$$

where a_{n} is equal to n, for even n and $1 / n$, for odd n.
In these cases we may want to obtain a unique expression for the general term. To do this, from the successive powers of -1 , we define the sequences $\left\{i_{n}\right\}$ and $\left\{p_{n}\right\}$:

$$
\left\{(-1)^{n}, n \in \mathbb{N}\right\}=-1,1,-1,1, \ldots \Longrightarrow\left\{\begin{array}{l}
\left\{i_{n}\right\}=\left\{\frac{1-(-1)^{n}}{2}\right\}=1,0,1,0,1,0, \ldots \\
\left\{p_{n}\right\}=\left\{\frac{1+(-1)^{n}}{2}\right\}=0,1,0,1,0,1, \ldots
\end{array}\right.
$$

Now we consider the sequence obtained by rearranging the integers

$$
0,1,-1,2,-2,3,-3, \ldots
$$

The proposed exercise is:
a) Obtain the expressions of the general term for even and odd n.
b) Get a single expression for the general term.

Solution.

a) Observing the sequence of integers, we see that:

- For n even $(n=2,4,6 \ldots)$, the terms are $1,2,3 \ldots$, then $a_{n}=\frac{n}{2}$.
- For n odd, the terms are $0,-1,-2, \ldots$. Its value increases by -1 when n increases by 2 . Then a_{n} will be of the form $k-n / 2$. Since $a_{1}=0$

$$
k-\frac{n}{2} \stackrel{n=1}{=} k-\frac{1}{2}=0 \Longrightarrow k=\frac{1}{2} \Longrightarrow a_{n}=\frac{1-n}{2}
$$

This can be stated in a more general way: for both even and odd n, the increments of the value of a_{n} are constant with each increment of n, so a_{n} will be of the form $\alpha n+\beta$. Substituting in each case n by its two first values, we get two equations with two unknowns, which give us the values of α and β.
b) To obtain an expression of a_{n} that is valid $\forall n$, we will use the sequences $\left\{i_{n}\right\}$ and $\left\{p_{n}\right\}$ defined at the beginning.

- If we multiply by i_{n} the expression of a_{n} for n odd, the terms of the resulting sequence will take the correct value for n odd and will be equal to 0 otherwise.
- If we multiply by p_{n} the expression of a_{n} for even n, the terms of the resulting sequence will take the correct value for even n and will be equal to 0 otherwise.
- Adding both expressions, the result will give us the value of $a_{n} \forall n$.

$$
\begin{gathered}
a_{n}=\left(\frac{1-(-1)^{n}}{2}\right) \frac{1-n}{2}+\left(\frac{1+(-1)^{n}}{2}\right) \frac{n}{2}=\frac{1-n-(-1)^{n}+(-1)^{n} n}{4}+\frac{n+(-1)^{n} n}{4}= \\
=\frac{1+(-1)^{n}(-1+n+n)}{4}=\frac{2 n-1}{4}(-1)^{n}+\frac{1}{4}
\end{gathered}
$$

