## General term of the sequence of integers (16.07.2022)

There are sequences whose general term has different expressions for even or odd $n$, for example:

$$
\frac{1}{1}, 2, \frac{1}{3}, 4, \ldots
$$

where $a_{n}$ is equal to $n$, for even $n$ and $1 / n$, for odd $n$.
In these cases we may want to obtain a unique expression for the general term. To do this, from the successive powers of -1 , we define the sequences $\left\{i_{n}\right\}$ and $\left\{p_{n}\right\}$ :

$$
\left\{(-1)^{n}, n \in \mathbb{N}\right\}=-1,1,-1,1, \ldots \Longrightarrow\left\{\begin{array}{l}
\left\{i_{n}\right\}=\left\{\frac{1-(-1)^{n}}{2}\right\}=1,0,1,0,1,0, \ldots \\
\left\{p_{n}\right\}=\left\{\frac{1+(-1)^{n}}{2}\right\}=0,1,0,1,0,1, \ldots
\end{array}\right.
$$

Now we consider the sequence obtained by rearranging the integers

$$
0,1,-1,2,-2,3,-3, \ldots
$$

The proposed exercise is:
a) Obtain the expressions of the general term for even and odd $n$.
b) Get a single expression for the general term.

