Principle of induction: example (16.0772022)

We want to prove the following property, which we will call $P(n)$: "The sum of the first n cubes of the natural numbers is equal to the square of the sum of these n numbers"

$$
\sum_{i=1}^{n} i^{3}=1^{3}+2^{3}+\cdots+n^{3}=(1+2+\cdots+n)^{2}
$$

For this we apply the Principle of induction, that is:
a) We show that $P(1)$ is true: indeed $1^{3}=1^{2}$, then $P(1)$ holds.
b) We assume $P(k)$ is true: $1^{3}+2^{3}+\cdots+k^{3}=(1+2+\cdots+k)^{2}$.
c) We prove $P(k+1)$ is true: $1^{3}+2^{3}+\cdots+k^{3}+(k+1)^{3}=(1+2+\cdots+k+k+1)^{2}$.

To do it we add $(k+1)^{3}$ to both members of the equality \mathbf{b}) and operate on the second member, taking into account the expression for the sum of k consecutive natural numbers:

$$
\begin{aligned}
& 1^{3}+2^{3}+\cdots+k^{3}+(k+1)^{3}=(1+2+\cdots+k)^{2}+(k+1)^{3}= \\
& {\left[\frac{(1+k)}{2} k\right]^{2}+(k+1)^{3}=\frac{(k+1)^{2} k^{2}}{4}+(k+1)^{3}=(k+1)^{2}\left[\frac{k^{2}}{4}+k+1\right]=} \\
& (k+1)^{2}\left[\frac{k^{2}+4 k+4}{4}\right]=\left[\frac{(k+1)(k+2)}{2}\right]^{2}=(1+2+\cdots+k+k+1)^{2}
\end{aligned}
$$

Another approach to the proof (which in this case involves performing the same operations) is to write the first member of the equality \mathbf{c}) that we want to prove and apply $P(k)$, replacing the sum of the k first cubes by the square of the sum of the k first natural. Operating as before, the desired equality is obtained.

Note. It is proposed to solve the exercise by proving $P(k+1)$ from right to left, starting from the second member of the equality to be proved.

