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2. Quadrics.
Throughout this chapter we will work on the Euclidean affine space E3 with re-

spect to a rectangular affine coordinate system {O; ē1, ē2, ē3}. We will denote by
(x, y, z) the affine coordinates with respect to this reference and by (x, y, z, t) the
homogeneous coordinates.

1 Definition and equations.

Definition 1.1 A quadric is a surface in E3 determined, in affine coordinates, by
a quadratic equation.

In this way the general equation of a quadric will be:

a11x2 + a22y2 + a33z2 + 2a12xy + 2a13xz + 2a23yz + 2a14x+ 2a24y + 2a34z + a44 = 0

with (a11, a22, a33, a12, a13, a23) 6= (0, 0, 0, 0, 0, 0) (to guarantee that the degree of the
equation is 2.)

Other equivalent expressions of the equation of a quadric are:

1. In terms of the matrix A associated to the quadric (every symmetric matrix
4× 4 determines a quadric):

(x y z 1 )A

x
y
z
1

 = 0, with A =

 a11 a12 a13 a14
a12 a22 a23 a24
a13 a23 a33 a34
a14 a24 a34 a44

 .

2. In terms of the matrix T of quadratic terms:

(x y z )T

(
x
y
z

)
+ 2 ( a14 a24 a34 )

(
x
y
z

)
+ a44 = 0,

with

T =

(
a11 a12 a13
a12 a22 a23
a13 a23 a33

)
6= Ω.

3. In homogeneous coordinates:

(x y z t )A

x
y
z
t

 = 0, with A =

 a11 a12 a13 a14
a12 a22 a23 a24
a13 a23 a33 a34
a14 a24 a34 a44

 .

From the last equation we deduce that, in homogeneous coordinates, the points of
the quadric are the self-conjugate vectors of the quadratic form determined by the
associated matrix A.

Definition 1.2 We will say that a quadric is degenerate when its associated matrix
has a null determinant.

2 Intersection of a line and a quadric.

We consider a quadric given by a symmetric matrix A. Let P = (p) and Q = (q)
be any two points. Let us calculate the intersection of the line joining them and the
quadric, in homogeneous coordinates:

line PQ ≡ (x) = α(p) + β(q).
quadric ≡ (x)tA(x) = 0.

Substituting the first equation in the second one:

(α(p) + β(q))tA(α(p) + β(q)) = 0 ⇐⇒ α2(p)tA(p) + 2αβ(p)tA(q) + β2(q)tA(q) = 0.

- If (p)tA(p) = (p)tA(q) = (q)tA(q) = 0 the equation holds for any pair (α, β).
The line is contained in the quadric.

- In other case, we obtain a quadratic equation whose discriminant is

1

4
∆ = [(p)tA(q)]2 − [(p)tA(p)][(q)tA(q)].

We have three possibilities:

1. ∆ > 0: Secant line. There are two different real solutions, so the line intersects
the quadric at two different points.

2. ∆ = 0: Tangent line. There is a double solution, so the line intersects the
quadric at a double point.

3. ∆ < 0: Exterior line. There are no real solutions. The line does not intersect
the quadric.

We can apply this to the following situations:

1. Tangent plane to the quadric at a point P on the quadric. The tangent
plane to the quadric at a point P is formed by all the tangent lines at that
point. Since P is in the quadric we have (p)tA(p) = 0. Therefore the tangent
plane has the following equation:

(p)A(x)t = 0
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2. Cone of lines tangent to the quadric from an exterior point P . If P is
a point exterior to the quadric, the tangent lines to it will be obtained by the
equation:

[(p)tA(x)]2 − [(p)tA(p)][(x)tA(x)] = 0

In general, this equation corresponds to the cone of center P formed by all
tangent lines to the quadric.

Again polarity will give us another method to calculate these lines.

3 Polarity.

We work with a quadric whose associated matrix is A.

Definition 3.1 Given any point P with homogeneous coordinates (p1, p2, p3, tp) and
a quadric determined by a matrix A, the polar plane of P with respect to the
quadric is the plane with equation

( p1 p2 p3 tp )A

x
y
z
t

 = 0.

P is said to be the pole of the plane.

Remark 3.2 Analogously to what happened in the case of conics, the concepts of
pole and polar plane are dual to each other. Suppose that the quadric defined by A
is non-degenerate. Given a pole P and its polar plane πP the family of planes
passing through P corresponds to the polar planes of the points of πp. Indeed,
let (p) be the coordinates of P . If B,C and D are three points of πP , with coordinates
(b), (c) and (d) respectively, it follows that:

(p)tA(b) = 0 ⇒ P ∈ polar plane of B
(p)tA(c) = 0 ⇒ P ∈ polar plane of C
(p)tA(d) = 0 ⇒ P ∈ polar plane of D

Therefore the pencil of planes that passes through P will be:

planes through P ⇐⇒ α(b)tA(x) + β(c)tA(x) + γ(d)tA(x) = 0 ⇐⇒
⇐⇒ (α(b) + β(c) + γ(d))tA(x) = 0 ⇐⇒
⇐⇒ polar planes of points α(b) + β(c) + γ(d) ⇐⇒
⇐⇒ polar planes of the points of πP .

Let us see the geometric interpretation of the polar plane. Let C be the (non-
degenerate) quadric defined by A, P the pole and πP the corresponding polar plane:

1. If P is not on the quadric and the polar plane intersects the quadric, then
the points of intersection of the polar plane and the quadric are the points of
tangency of the tangent lines through P to the quadric.

Proof: Let X ∈ C ∩ πP . Then:

X ∈ C ⇐⇒ (x)tA(x) = 0.
X ∈ πp ⇐⇒ (p)tA(x) = 0.

line joining X and P ⇐⇒ α(p) + β(x) = 0.

Let us see that the line joining P and X is tangent to C. We intersect this line
with the quadric and obtain:

α2(p)tA(p) + 2αβ(p)tA(x) + β2(x)tA(x) = 0 ⇒ α2(p)tA(p) = 0

that is to say, there is only one solution and therefore the line PX is tangent
to the quadric line in X.

2. If P is on the quadric, then the polar plane is the plane tangent to the quadric
at the point P .

Note: This is a particular case of the previous situation.

As we will see later, there are quadrics formed by two families of real lines, that
is, quadrics such that two real lines pass through each of their points. The tangent
plane can be used used to calculate these lines. It is enough to take into account the
following result:

Theorem 3.3 The tangent plane to a quadric (if it is not contained in it) cuts it
into two lines (real or imaginary), or a double line.

Proof: Since the quadric is defined by an equation of degree 2, the intersection of
this surface with a plane not contained in it is also determined by an equation of
degree 2. Therefore it will be a conic.

Let a quadric be determined by the matrix A and P = (p) be a point of the
quadric. The equation of the tangent plane in P is:

(p)A(x)t = 0

Let Q = (q) be any point at the intersection of the quadric and the tangent plane.
Let’s see that the line that joins P and Q is contained in the quadric. We have:

P ∈quadric ⇒ (p)tA(p) = 0
Q ∈quadric ⇒ (q)tA(q) = 0

Q ∈tangent plane ⇒ (p)tA(q) = 0

In other words, the points (p) and (q) satisfy exactly the conditions we found in the
previous section which ensure that the line joining them is contained in the quadric.
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4 Change of coordinate system.

Let R1 = {O; ē1, ē2, ē3} and R2 = {Q; ē′1, ē
′
2, ē
′
3}. We denote by (x, y, z) and

(x′, y′, z′) respectively the affine coordinates in each of the coordinate systems. Let
us suppose that

- The point Q has coordinates (q1, q2, q3) with respect to the first coordinate
system.

- (ē′) = (ē)C, where C = MBB′ .

Then we know that the change-of-coordinates formula isx
y
z
t

 =

 C
q1

q2

q3

0 0 0 1


x
y
z
t

 ⇐⇒

x
y
z
t

 = B

x′

y′

z′

t′

 .

Arguing exactly as in the case of conics we obtain:

Theorem 4.1 Two matrices A,A′ of the same quadric with respect to two different
coordinate systems R1, R2, are congruent

A′ = BtAB

where B is the change-of-coordinates matrix from R2 to R1, in homogeneous coordi-
nates.

Theorem 4.2 The matrices of quadratic terms T, T ′ of a quadric with respect to
two different coordinate systems R1, R2 are congruent

T ′ = CtTC

where C is the change-of-coordinates matrix from the base of R2 to that of R1.

5 Classification of quadrics and reduced equa-
tion.

Given a quadric defined by a symmetric matrix A, we find its reduced equation. This
consists of performing a reference change such that the equation of the quadric with
respect to that new reference is as simple as possible. Once more we will need to
apply

1. A rotation. It allows us to place the axis or axes of the quadric parallel to
the coordinate axes of the new reference. The matrix of quadratic terms in the
new reference will be diagonal.

2. A translation. This allows us to place the center(s) (if any) of the quadric
at the origin of coordinates (otherwise we will take a vertex to the origin of
coordinates).

As in the case of conics, we make the following important remark:

We will assume that at least one term of the diagonal
of matrix T of quadratic terms is nonnegative.

If this property is not fulfilled, it is enough to work with the matrix −A instead of
with A. In this way we ensure that T always has at least one positive eigenvalue.

5.1 Step I: Reduction of quadratic terms (the rotation).

Since the matrix T of quadratic terms is symmetric and not zero, it has three real
eigenvalues λ1, λ2, and λ3, with λ1 6= 0. We will assume that the eigenvalues
are ordered according to the positive-negative-null criterion, and that the
number of positive eigenvalues is always greater than the number of negative ones
(this can always be achieved by changing the sign of A if necessary). Furthermore,
we know that there exists an orthonormal basis of eigenvectors {ū1, ū2, ū3} such that:

T ′ = CtTC with (ū) = (ē)C and T ′ =

(
λ1 0 0
0 λ2 0
0 0 λ3

)
The change-of-coordinates equation is:(

x
y
z

)
= C

(
x′

y′

z′

)
so that in the new basis the equation of the quadric is:

(x′ y′ z′ )CtTC

(
x′

y′

z′

)
+ 2 ( a14 a24 a34 )C

(
x′

y′

z′

)
+ a44 = 0

Operating, we obtain:

λ1x
′2 + λ2y

′2 + λ3z
′2 + 2b14x

′ + 2b24y
′ + 2b34z

′ + b44 = 0

5.2 Step II: Reduction of linear terms (the translation3).

Now from the previous equation we complete the expressions of x′, y′ and z′ to the
square of a binomial (if possible), adding and subtracting the appropriate terms.
Specifically:

3If λ2 = λ3 = 0 and b224 + b234 6= 0 we will still have to do a new rotation.
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- For x′:

λ1x
′2 + 2b14x

′ = λ1(x′2 + 2
b14
λ1
x′ +

b214
λ2
1

)− b214
λ1

= λ1(x′ +
b14
λ1

)2 − b214
λ1

- For y′, if λ2 6= 0:

λ2y
′2 + 2b24y

′ = λ2(y′2 + 2
b24
λ2
y′ +

b224
λ2
2

)− b224
λ2

= λ2(y′ +
b24
λ2

)2 − b224
λ2

- For z′:

• If λ3 6= 0:

λ3z
′2 + 2b34z

′ = λ3(z′2 + 2
b34
λ3
z′ +

b234
λ2
3

)− b234
λ3

= λ3(z′ +
b34
λ3

)2 − b234
λ3

• If λ3 = 0, λ2 6= 0 and b34 6= 0:

2b34z
′ + b44 −

b224
λ2
− b214
λ1

= 2b34(z′ +
1

2b34
(b44 −

b224
λ2
− b214
λ1

))

• If λ2 = λ3 = 0 and b224 + b234 6= 0. In this case, in addition to the translation,
there is still a rotation to be made:

2b24y
′ + 2b34z

′ + b44 −
b214
λ1

= 2c24
b24y

′ + b34z
′ + 1

2
(b44 −

b214
λ1

)

c24

with c24 =
√
b224 + b234.

We make the corresponding change of coordinates in each case and obtain the
following reduced forms:

λ1x
′2 + λ2y

′2 + λ3z
′2 + 2b14x

′ + 2b24y
′ + 2b34z

′ + b44 = 0

Eigenvalues and coefficients Change of coordinates and reduced equation.

λ1, λ2, λ3 6= 0

x′′ = x′ +
b14
λ1

y′′ = y′ +
b24
λ2

z′′ = z′ +
b34
λ3

λ1x
′′2 + λ2y

′′2 + λ3z
′′2 + c44 = 0

λ1, λ2 6= 0
λ3 = 0
b34 6= 0

x′′ = x′ +
b14
λ1

y′′ = y′ +
b24
λ2

z′′ = z′ + 1
2b34

(b44 −
b224
λ2
− b214

λ1
)

λ1x
′′2 + λ2y

′′2 + 2c34z
′′ = 0

λ1, λ2 6= 0
λ3 = 0
b34 = 0

x′′ = x′ +
b14
λ1

y′′ = y′ +
b24
λ2

λ1x
′′2 + λ2y

′′2 + c44 = 0

λ1 6= 0
λ2 = λ3 = 0
b224 + b234 6= 0

x′′ = x′ +
b14
λ1

y′′ =
b24y

′ + b34z
′ + 1

2
(b44 −

b214
λ1

)

c24

z′′ =
b34y

′ − b24z′

c24

λ1x
′′2 + 2c24y

′′ = 0 , c24 =
√
b224 + b234

λ1 6= 0
λ2 = λ3 = 0
b224 + b234 = 0

x′′ = x′ +
b14
λ1

λ1x
′′2 + c44 = 0
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In other words, we are left with a reduced equation of the form:

λ1x
′′2 + λ2y

′′2 + λ3z
′′2 + 2c24y

′′ + 2c34z
′′ + c44 = 0

with the following possibilities for the values of λ2, λ3, c24, c34, and c44:

1. If λ2 > 0 and λ3 > 0, then c24 = c34 = 0 and if:

(a) c44 > 0, then the reduced equation is:

λ1x
′′2 + λ2y

′′2 + λ3z
′′2 + |c44| = 0 Imaginary ellipsoid.

(b) c44 = 0, then the reduced equation is:

λ1x
′′2 + λ2y

′′2 + λ3z
′′2 = 0 Imaginary cone.

(c) c44 < 0, then the reduced equation is:

λ1x
′′2 + λ2y

′′2 + λ3z
′′2 − |c44| = 0 Real ellipsoid.

2. If λ2 > 0, λ3 < 0, then c24 = c34 = 0 and if:

(a) c44 > 0, then the reduced equation is:

λ1x
′′2 + λ2y

′′2 − |λ3|z′′2 + c44 = 0 Hyperboloid of two sheets.

(b) c44 = 0, then the reduced equation is:

λ1x
′′2 + λ2y

′′2 − |λ3|z′′2 = 0 Real cone.

(c) c44 < 0, then the reduced equation is:

λ1x
′′2 + λ2y

′′2 − |λ3|z′′2 − |c44| = 0 Hyperboloid of one sheet.

3. If λ2 > 0 and λ3 = 0, then c24 = 0 and if:

(a) c34 6= 0, then c44 = 0 and the reduced equation is:

λ1x
′′2 + λ2y

′′2 + 2c34z
′′ = 0 Elliptic paraboloid.

(b) c34 = 0:

i. if c44 > 0, then the reduced equation is:

λ1x
′′2 + λ2y

′′2 + c44 = 0 Imaginary elliptical cylinder.

ii. if c44 = 0, then the reduced equation is:

λ1x
′′2 + λ2y

′′2 = 0 Imaginary intersecting planes.

iii. if c44 < 0, then the reduced equation is:

λ1x
′′2 + λ2y

′′2 − |c44| = 0 Real elliptical cylinder.

4. If λ2 < 0 and λ3 = 0, then c24 = 0 and if:

(a) c34 6= 0, then c44 = 0 and the reduced equation is:

λ1x
′′2 − |λ2|y′′2 + 2c34z

′′ = 0 Hyperbolic paraboloid.

(b) c34 = 0, then c34 = 0 and,:

i. if c44 6= 0, then the reduced equation is:

λ1x
′′2 − |λ2|y′′2 + c44 = 0 Hyperbolic cylinder.

ii. if c44 = 0, then the reduced equation is:

λ1x
′′2 − |λ2|y′′2 = 0 Real intersecting planes.

5. If λ2 = λ3 = 0, then c34 = 0 and if:

(a) b224 + b234 > 0, then c44 = 0 and the reduced equation is:

λ1x
′′2 + 2c24y

′′ = 0 Parabolic cylinder.

(b) b224 + b234 = 0, then c24 = c34 = 0 and:

i. if c44 > 0, then the reduced equation is:

λ1x
′′2 + c44 = 0 Imaginary parallel planes.
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ii. if c44 = 0, then the reduced equation is:

λ1x
′′2 = 0 Double plane.

iii. if c44 < 0, then the reduced equation is:

λ1x
′′2 − |c44| = 0 Real parallel planes.

5.3 Classification based on the signatures of T and A.

Since the change of coordinates is equivalent to applying a transformation of the
form BABt to the matrix A, to classify the quadric we can diagonalize (as far as
possible) the matrix A by congruence, but with the following restriction:

The last row can neither be added to the others, nor multiplied by a
scalar, nor changed position.

If the matrix A is diagonalizable, we can completely classify the quadric based on
the signature of A. Except for a change of sign, we will be at one of the following
cases.

Signature A A diagonalizes.

+,+,+; + Imaginary ellipsoid

+,+,+;− Real ellipsoid

+,+,−;− Hyperboloid of 1 sheet

+,+,−; + Hyperboloid of 2 sheets

+,+,−; 0 Real cone

+,+,+; 0 Imaginary cone

+,+, 0; + Imaginary elliptical cylinder

+,+, 0;− Real elliptical cylinder

+,−, 0; + Hyperbolic cylinder

+,−, 0; 0 Real intersecting planes

+,+, 0; 0 Imaginary intersecting planes

+, 0, 0;− Real parallel planes

+, 0, 0; + Imaginary parallel planes

+, 0, 0; 0 Double plane

If A does not diagonalize, the quadric is parabolic. It can be classified in terms of
the signature of T .

Signature T A DOES NOT diagonalize.

+,+, 0 Elliptical Paraboloid

+,−, 0 Hyperbolic paraboloid

+, 0, 0 Parabolic cylinder

It must be taken into account that the diagonalization of A by con-
gruence does not have to coincide with the reduced form of the quadric.
That is, it can be used to classify the quadric but not to calculate its
reduced equation.

We can also directly calculate the signature of T , finding its eigenvalues or by
diagonalization and use the rank and determinant of A to specify the classification.
In this way we do not distinguish between the real or imaginary character of the
elliptical cylinder and the intersecting planes.

rank(A) = 4

Signature T |A| > 0 |A| < 0

+,+,+ Imaginary ellipsoid Real ellipsoid

+,+,− Hyperboloid of 1 sheets Hyperboloid of 2 sheets

+,+, 0 Elliptical Paraboloid

+,−, 0 Hyperbolic paraboloid

Signature T rank(A) = 3

+,+,+ Imaginary cone

+,+,− Real cone

+,+, 0 Real or imaginary elliptical cylinder

+,−, 0 Hyperbolic cylinder

+, 0, 0 Parabolic cylinder

Signature T rank(A) = 2

+,+, 0 Imaginary intersecting planes

+,−, 0 Real intersecting planes

+, 0, 0 Real or imaginary parallel planes

Signature T rank(A) = 1

+, 0, 0 Double plane

In addition when the quadric is non-degenerate we can calculate the reduced
equation, from the eigenvalues λ1 > 0, λ2 and λ3 of T and |A|:

1. If |T | 6= 0, then:

λ1x
′′2 + λ2y

′′2 + λ3z
′′2 + c = 0, with c =

|A|
|T | .

2. If |T | = 0, then:

λ1x
′′2 + λ2y

′′2 − 2cz′′ = 0, with c =

√
|A|
−λ1λ2

.
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We can even give the reference in which these reduced forms are obtained:

1. In the case of |T | 6= 0 (of elliptic or hyperbolic type), the new coordinate system
contains an orthonormal basis of eigenvectors of T and the new origin is the
center of the quadric. One just has to be careful to order the eigenvectors in a
way that is consistent with how the eigenvalues are ordered.

2. In the case of |T | = 0 (of parabolic type), the new coordinate system contains an
orthonormal basis of eigenvectors of T and the new origin is the vertex. Now, in
addition to correctly ordering the eigenvectors, we must check whether the sign
of the eigenvector associated with the null eigenvalue has been chosen correctly.

5.4 Obtaining the planes that form the quadrics of range
1 or 2.

Once the quadric has been classified, if it is of range 1 or 2, the most efficient way
to obtain the planes forming it is the following:

1. If the quadric correspond to parallel planes (real or imaginary) or a double
plane, we obtain the plane of centers. If it is a double plane we are done. In
other case we intersect the quadric with any line (as simple as possible) and we
obtain two points (real or imaginary). The planes that form the quadric are
parallel to the plane of centers and pass through said points.

2. If they are intersecting planes (real or imaginary), we obtain the line of centers.
Then we intersect the quadric with any line (as simple as possible) which does
not intersect the line of centers and we obtain two points (real or imaginary).
The planes that form the quadric are those generated by the line of centers and
said points.

6 Notable points, lines and planes associated
with a quadric.

In what follows we will work on a quadric whose associated matrix with respect to
a certain coordinate system is A.

6.1 Singular points.

Definition 6.1 A singular point of a surface is a point of non-differentiability of
the surface.

Equivalently, a singular point of a surface is a point with more than one plane
of tangency.

Equivalently, if every line passing through a point P of a surface intersects it with
multiplicity > 1 in P , then P is a singular point.

Let us see when singular points appear in a quadric. Let P = (p) be a point of it.
We take any line passing through P . To do this we choose any point Q = (q) that is
not in the quadric and join it with P . Its equation in homogeneous coordinates is:

(x) = α(p) + β(q).

If we intersect it with the quadric, we obtain the equation:

2αβ(p)tA(q) + β2(q)tA(q) = 0.

The point P is singular if the only solution of this equation is β = 0 with multiplicity
2, for any point (q), that is, if:

(p)tA(q) = 0 for any (q).

This is true when:
(p)A = 0̄ ⇐⇒ A(p)t = 0.

We conclude the following:

Theorem 6.2 A quadric given by a matrix A has singular points (proper or im-
proper) if and only if det(A) = 0. In this case, the quadric is called degenerate and
the singular points (affine) are those that satisfy the equation:

A

x
y
z
1

 =

 0
0
0
0



6.2 Center.

Definition 6.3 A center of a quadric is an affine point which is a center of
symmetry of the quadric.

We denote the homogenous coordinates of the center by (a, b, c, 1) . Let us see
how to calculate it:

- We consider the equation of a line that passes through the center and has a
certain direction vector (p, q, r):

(x, y, z, 1) = (a, b, c, 1) + λ(p, q, r, 0).

- We substitute in the equation of the quadric and obtain:

( p q r 0 )A

 p
q
r
0

λ2 + 2 ( a b c 1 )A

 p
q
r
0

λ+ ( a b c 1 )A

 a
b
c
1

 = 0
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Unit IV. Chapter 2. Quadrics. Álgebra Lineal II. Departament of Mathematics, UDC.

- For (a, b, c, 1) to be a center, the solutions of λ must be opposite values for any
direction (p, q, r) 6= (0, 0, 0). This means that:

( a b c 1 )A

 p
q
r
0

 = 0 for any (p, q, r) 6= (0, 0, 0)

- We deduce that the equation of the center is:

A

 a
b
c
1

 =

 0
0
0
h



6.3 Asymptotic directions.

Definition 6.4 The asymptotic directions are those points at infinity contained
in the quadric.

From the definition it is clear that the asymptotic directions (p, q, r, 0) are obtained
by solving the equation:

( p q r 0 )A

 p
q
r
0

 = 0, (p, q, r) 6= (0, 0, 0)

6.4 Diametral planes and diameters.

Definition 6.5 A diametral plane of a quadric is the polar (affine) plane of a
point at infinity. The point at infinity is called conjugate direction with the
diametral plane.

A diameter is a straight line which is the intersection of two Diametral planes.

Remark 6.6 Any diameter passes through the center (or centers) of the quadric.

Proof: Suppose A is the matrix of the quadric and (a, b, c, 1) is a center. A diametral
plane has the equation:

(u1 u2 u3 0 )A

x
y
z
1

 = 0

where (u1, u2, u3) is the conjugate direction. On the other hand we saw that if
(a, b, c, 1) is the center it satisfies:

A

 a
b
c
1

 =

 0
0
0
h

 .

We deduce that

(u1 u2 u3 0 )A

 a
b
c
1

 = 0

and therefore the diametral plane contains the center. Since the diameters are inter-
sections of diametral planes, they also contain the center.

6.5 Principal planes, axes and vertices.

Definition 6.7 The principal planes are the diametral planes orthogonal to their
conjugate direction.

They axes are the intersections of the principal planes.

The vertices are the intersection of the axes with the quadric.

Remark 6.8 The conjugate directions of the principal planes are the eigenvectors
of T associated with nonzero eigenvalues.

Proof: Let (u1, u2, u3, 0) be a point at infinity and

(u1 u2 u3 0 )A

x
y
z
1

 = 0

the equation of the corresponding diametral plane. Operating, we obtain that the
normal vector of the plane is:

T

(
u1

u2

u3

)
.

Since this line must be orthogonal to the conjugate direction, this normal vector
must be parallel to (u1, u2, u3) and therefore:

T

(
u1

u2

u3

)
= λ

(
u1

u2

u3

)
.

We deduce that (u1, u2, u3) is an eigenvector of T , associated to the eigenvalue λ.
Finally we take into account that if λ = 0, then the previous plane would be the
plane at infinity, and therefore it is not an axis.
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7 Description of the real quadrics of rank 3 and
4.

7.1 Real quadrics of rank 4.

7.1.1 Real ellipsoid.

The reduced equation of an ellipsoid is:

x2

a2
+
y2

b2
+
z2

c2
= 1, a, b, c 6= 0

Its notable points, lines and planes are:

1. Center: (0, 0, 0).

2. Asymptotic directions: Does not have.

3. Diametral planes and diameters: Any plane and any line passing through
the center.

4. Principal planes, axes and vertices:

(a) a 6= b 6= c:

Principal Planes Axes Vertices

x = 0;
y = 0;
z = 0;

y = 0; z = 0;
x = 0; z = 0;
x = 0; y = 0;

(−a, 0, 0), (a, 0, 0)
(0, b, 0), (0,−b, 0)
(0, 0, c), (0, 0,−c)

(b) a = b and b 6= c (Ellipsoid of revolution):

Principal Planes Axes Vertices

αx+ βy = 0;

z = 0;

αx+ βy = 0; z = 0;

x = 0; y = 0;
(OZ ≡ Axis of revolution)

(p, q, 0)
p2 + q2 = a2

(0, 0, c), (0, 0,−c)

(c) a = b = c (Sphere):

All planes and lines passing through the center are principal planes and
axes. Therefore all points on the sphere are vertices. Any line passing
through the center is an axis of revolution.

7.1.2 Hyperboloid of one sheet.

The reduced equation of a one-sheet hyperboloid is:

x2

a2
+
y2

b2
− z2

c2
= 1, a, b, c 6= 0

Its notable points, lines and planes are:

1. Center: (0, 0, 0).

2. Asymptotic directions: The cone formed by all the vectors (x, y, z) that
satisfy the equation:

x2

a2
+
y2

b2
− z2

c2
= 0.

3. Diametral planes and diameters: Any plane and any line passing through
the center.

4. Principal planes, axes and vertices:

(a) a 6= b:

Principal Planes Axes Vertices

x = 0;
y = 0;
z = 0;

y = 0; z = 0;
x = 0; z = 0;
x = 0; y = 0;

(−a, 0, 0), (a, 0, 0)
(0, b, 0), (0,−b, 0)

(b) a = b (Hyperboloid of one sheet of revolution):

Principal Planes Axes Vertices

αx+ βy = 0;

z = 0;

αx+ βy = 0; z = 0;

x = 0; y = 0;
(OZ ≡ Axis of revolution)

(p, q, 0)
p2 + q2 = a2

The hyperboloid of one sheet is a ruled surface. The two families of straight lines
contained in the quadric are:(

x

a
+
z

c

)
= α

(
1 +

y

b

)
α
(
x

a
− z

c

)
=

(
1− y

b

)  and


(
x

a
+
z

c

)
= β

(
1− y

b

)
β
(
x

a
− z

c

)
=

(
1 +

y

b

) .
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7.1.3 Hyperboloid with two sheets.

The reduced equation of a hyperboloid with two sheets is:

x2

a2
+
y2

b2
− z2

c2
+ 1 = 0, a, b, c 6= 0

Its notable points, lines and planes are:

1. Center: (0, 0, 0).

2. Asymptotic directions: The cone formed by all the vectors (x, y, z) that
satisfy the equation:

x2

a2
+
y2

b2
− z2

c2
= 0.

3. Diametral planes and diameters: Any plane and any line passing through
the center.

4. Principal planes, axes and vertices:

(a) a 6= b:

Principal Planes Axes Vertices

x = 0;
y = 0;
z = 0;

y = 0; z = 0;
x = 0; z = 0;
x = 0; y = 0; (0, 0,−c), (0, 0, c)

(b) a = b (Hyperboloid of two sheets of revolution):

Principal Planes Axes Vertices

αx+ βy = 0;

z = 0;

αx+ βy = 0; z = 0;

x = 0; y = 0;
(OZ ≡ Axis of revolution )

(0, 0,−c), (0, 0, c)

7.1.4 Elliptic paraboloid.

The reduced equation of an elliptic paraboloid is:

x2

a2
+
y2

b2
− z = 0, a, b 6= 0

Its notable points, lines and planes are:

1. Center: Does not have ((0, 0, 1, 0) could be considered an improper center).

2. Asymptotic directions: (0, 0, 1).

3. Diametral planes and diameters: Planes and lines parallel to the OZ axis.

4. Principal planes, axes and vertices:

(a) a 6= b:

Principal Planes Axes Vertices

x = 0;
y = 0;

x = 0; y = 0; (0, 0, 0)

(b) a = b (Elliptic paraboloid of revolution):

Principal Planes Axes Vertices

αx+ βy = 0;
x = 0; y = 0;
(OZ ≡ Axis of revolution)

(0, 0, 0)
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7.1.5 Hyperbolic paraboloid.

The reduced equation of a hyperbolic paraboloid is:

x2

a2
− y2

b2
− z = 0, a, b 6= 0

Its notable points, lines and planes are:

1. Center: Does not have ((0, 0, 1, 0) could be considered an improper center).

2. Asymptotic directions: (a, b, z) and (a,−b, z), for any z ∈ IR.

3. Diametric planes and diameters: Planes and lines parallel to the OZ axis.

4. Principal planes, axes and vertices:

Principal Planes Axes Vertices

x = 0;
y = 0;

x = 0; y = 0; (0, 0, 0)

The hyperbolic paraboloid is a ruled surface. The two families of lines contained
in the quadric are:

α
(
x

a
+
y

b

)
= z(

x

a
− y

b

)
= α

 and


(
x

a
+
y

b

)
= β

β
(
x

a
− y

b

)
= z

.

7.2 Real quadrics of rank 3.

7.2.1 Real cone.

The reduced equation of a real cone is:

x2

a2
+
y2

b2
− z2

c2
= 0, a, b, c 6= 0

Its notable points, lines and planes are:

1. Singular points: (0, 0, 0).

2. Center: (0, 0, 0).

3. Asymptotic directions: Vectors (x, y, z) that satisfy the equation of the cone.

4. Diametral planes and diameters: Planes and lines passing through the
center.

5. Principal planes, axes and vertices:

(a) a 6= b:

Principal Planes Axes Vertices

x = 0;
y = 0;
z = 0;

y = 0; z = 0;
x = 0; z = 0;
x = 0; y = 0;

(0, 0, 0)

(b) a = b (Real cone of revolution):

Principal Planes Axes Vertices

αx+ βy = 0;

z = 0;

αx+ βy = 0; z = 0;

x = 0; y = 0;
(OZ ≡ Axis of revolution)

(0, 0, 0)

The cone is a ruled surface. The generatrices of the cone are given by the equations:(
z

c
+
x

a

)
= α

y

b

α
(
z

c
− x

a

)
=

y

b

.

7.2.2 Real elliptical cylinder.

The reduced equation of a real elliptical cylinder is:
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x2

a2
+
y2

b2
= 1, a, b 6= 0

Its notable points, lines and planes are:

1. Singular points: (improper) point (0, 0, 1, 0).

2. Center: The OZ axis is a line of centers (x = 0; y = 0).

3. Asymptotic directions: (0, 0, 1).

4. Diametral planes and diameters: Planes containing the OZ axis and the
OZ axis as the only diameter.

5. Principal planes, axes and vertices:

(a) a 6= b:

Principal Planes Axes Vertices

x = 0;
y = 0;

x = 0; y = 0; NO

(b) a = b (Real cylinder of revolution):

Principal Planes Axes Vertices

αx+ βy = 0; x = 0; y = 0;
(OZ ≡ Axis of revolution)

NO

The elliptical cylinder is obviously a ruled surface. The family of lines is given by
the equations: (

x

a
+ 1
)

= α
y

b

α
(
x

a
− 1
)

=
y

b

.

7.2.3 Hyperbolic cylinder.

The reduced equation of a hyperbolic cylinder is:

x2

a2
− y2

b2
= 1, a, b 6= 0

Its notable points, lines and planes are:

1. Singular points: (improper) point (0, 0, 1, 0).

2. Center: The OZ axis is a line of centers (x = 0; y = 0).

3. Asymptotic directions: (0, 0, 1), (a, b, z) and (a,−b, z), for any z ∈ IR.

4. Diametral planes and diameters: Planes containing the OZ axis and the
OZ axis as the only diameter.

5. Principal planes, axes and vertices:

Principal Planes Axes Vertices

x = 0;
y = 0;

x = 0; y = 0; NO

The hyperbolic cylinder is obviously a ruled surface. The family of lines is given
by the equations: (

x

a
+
y

b

)
= α

α
(
x

a
− y

b

)
= 1

with α 6= 0 and where the sign of α indicates in which branch of the surface the line
is.

7.2.4 Parabolic cylinder.

The reduced equation of a parabolic cylinder is:
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x2 − 2py = 0, p 6= 0

Its notable points, lines and planes are:

1. Singular points: (improper) point (0, 0, 1, 0).

2. Center: It has no affine center, but a straight line with improper centers (x = 0;
t = 0).

3. Asymptotic directions: (0, y, z), for any y, z ∈ IR. That is, any direction in
the plane x = 0.

4. Diametric planes and diameters: Planes parallel to the plane x = 0. It
has no diameters.

5. Principal planes, axes and vertices:

Principal Planes Axes Vertices

x = 0 NOT NO

The parabolic cylinder is obviously a ruled surface. The family of lines is given by
the equations:

αx = 2py
x = α

.
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8 Reduced forms of quadrics.

1. x2

a2
+
y2

b2
+
z2

c2
− 1 =0 Ellipsoid

2. x2

a2
+
y2

b2
+
z2

c2
+ 1 =0 Imaginary ellipsoid

3. x2

a2
+
y2

b2
− z2

c2
− 1 =0 Hyperboloid of one sheet

4. x2

a2
+
y2

b2
− z2

c2
+ 1 =0 Hyperboloid of two sheets

5. x2

a2
+
y2

b2
− z2

c2
= 0 Cone

6. x2

a2
+
y2

b2
+
z2

c2
= 0 Imaginary cone

7. x2

a2
+
y2

b2
− z = 0 Elliptic paraboloid

8. x2

a2
− y2

b2
− z = 0 Hyperbolic paraboloid

9. x2

a2
+
y2

b2
− 1 = 0 Elliptical cylinder

10. x2

a2
+
y2

b2
+ 1 = 0 Imaginary elliptical cylinder

11. x2

a2
+
y2

b2
= 0 Imaginary intersecting planes

12. x2

a2
− y2

b2
− 1 = 0 Hyperbolic cylinder

13. x2

a2
− y2

b2
= 0 Pair of intersecting planes

14. y2 − 2px = 0 Parabolic cylinder

15. x2 − a2 = 0 Pair of parallel planes

16. x2 + a2 = 0 Pair of imaginary parallel planes

17. x2 = 0 Double plane
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