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Part IV

Conics and Quadrics.

1. Conics.
Throughout this chapter we will work on the Euclidean affine plane E2 with re-

spect to a rectangular affine coordinate system {O; ē1, ē2}. We will denote by (x, y)
the coordinates with respect to this reference and by (x, y, t) the homogeneous coor-
dinates.

1 Definition and equations.

Definition 1.1 A conic section (or simply conic) is a plane curve determined, in
coordinates, by a quadratic equation.

In this way the general equation of a conic will be:

a11x
2 + a22y

2 + 2a12xy + 2a13x+ 2a23y + a33 = 0

with (a11, a22, a12) 6= (0, 0, 0) (to ensure that the equation is quadratic).

Other equivalent expressions of the equation of a conic are:

1. In terms of the matrix A associated to the conic (every symmetric matrix
determines a conic):

(x y 1 )T

(
x
y
1

)
= 0, with A =

(
a11 a12 a13
a12 a22 a23
a13 a32 a33

)
.

2. Based on the matrix T of quadratic terms:

(x y )T

(
x
y

)
+ 2 ( a13 a23 )

(
x
y

)
+a33 = 0, with T =

(
a11 a12
a12 a22

)
6= Ω.

3. In homogeneous coordinates:

(x y t )T

(
x
y
t

)
= 0, with A =

(
a11 a12 a13
a12 a22 a23
a13 a32 a33

)
.

From the last equation we deduce that, in homogeneous coordinates, the points
of the conic are the self-conjugate vectors of the quadratic form that determines the
associated matrix A.

Definition 1.2 We will say that a conic is degenerate when it is formed by two
lines (same or different, real or imaginary).

We will see later that a conic is degenerate when its associated matrix A
has zero determinant.

2 Intersection of a line and a conic.

We consider a conic given by a symmetric matrix A. Let P = (p) and Q = (q) be
any two points. Let us express in homogeneous coordinates the intersection of the
conic with the line joining these points:

line PQ ≡ (x) = α(p) + β(q).
conic ≡ (x)tA(x) = 0.

Substituting the first equation into the second we obtain

(α(p) + β(q))tA(α(p) + β(q)) = 0 ⇐⇒ α2(p)tA(p) + 2αβ(p)tA(q) + β2(q)tA(q) = 0.

- If (p)tA(p) = (p)tA(q) = (q)tA(q) = 0 the equation holds for any pair (α, β). In
this case the line is contained in the conic.

- In other case, we obtain a quadratic equation with discriminant:

1

4
∆ = [(p)tA(q)]2 − [(p)tA(p)][(q)tA(q)].

There are three possibilities:

1. ∆ > 0: Secant line. There are two different real solutions, so the line intersects
the conic in two different points.

2. ∆ = 0: Tangent line. There is a double solution, so the line intersects the
conic in a double point.

3. ∆ < 0: Exterior line. There are no real solutions. The line does not intersect
the conic.

We can apply this to two situations:

1. Tangent line to the conic at a point P on the conic. If P is on the conic
then (p)tA(p) = 0. Therefore the tangent line will have the equation:

(p)tA(x) = 0

2. Tangent lines to the conic from an exterior point P . If P is a point
exterior to the conic, the tangent lines to it will be obtained by the equation:

[(p)tA(x)]2 − [(p)tA(p)][(x)tA(x)] = 0
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taking into account that this equation will be decomposed as a product of two
linear equations.

In the next section we will see how polarity will provide another method to obtain
tangent lines.

3 Polarity.

We work with a conic whose associated matrix is A.

Definition 3.1 Given a point P with homogeneous coordinates (p1, p2, p3) and a
conic determined by a matrix A, we call polar line of P with respect to the
conic the line of equation:

( p1 p2 p3 )A

(
x
y
t

)
= 0.

We denote this line by rP . The point P is said to be the pole of the line.

Remark 3.2 The concepts of pole and polar line are dual to each other. Suppose
that the conic defined by A is non-degenerate. Given a pole P and its polar line
rP the family of lines passing through P corresponds to the polar lines of
the points of rP . To check this we simply consider the following. Let (p) be the
coordinates of P . If B and C are two points of rP , with coordinates (b) and (c)
respectively, it follows that:

(p)tA(b) = 0 ⇒ P ∈ polar line of B
(p)tA(c) = 0 ⇒ P ∈ polar line of C

Therefore the pencil of straight lines that passes through P will be:

lines through P ⇐⇒ α(b)tA(x) + β(c)tA(x) = 0 ⇐⇒
⇐⇒ (α(b) + β(c))tA(x) = 0 ⇐⇒
⇐⇒ polar lines of the points α(b) + β(c) ⇐⇒
⇐⇒ polar lines of the points of rP

Let’s see the geometric interpretation of the polar line. Let C be the (nondegen-
erate) conic defined by A, let P a pole and rP its corresponding polar line:

1. If P is not on the conic and the polar line intersects the conic, then the points
of intersection of the polar line and the conic are the points of tangency of the
lines tangent to the conic through P .

Proof: Let X ∈ C ∩ rp. Then the following equations hold:

X ∈ C ⇐⇒ (x)tA(x) = 0
X ∈ rp ⇐⇒ (p)tA(x) = 0

line joining X and P ⇐⇒ α(p) + β(x) = 0

Let’s see that the line joining P and X is tangent to C. We find the intersection
of this line and the conic:

α2(p)tA(p) + 2αβ(p)tA(x) + β2(x)tA(x) = 0 ⇒ α2(p)tA(p) = 0

that is to say, there is only one solution and therefore the line PX is tangent
to the conic in X.

Observation: As a consequence of this, to calculate the tangents to a conic
from an exterior point P , it is enough to calculate the polar line of P and
intersect it with the conic. The requested lines are those that join these points
with P .

2. If P is on the conic, then the polar line is the line tangent to the conic at
point P .

Note: This is a particular case of the previous situation.

3. If P is not on the conic and the polar line does not intersect the conic, then the
polar line rP is obtained as follows: take a line passing through P and find the
points where this line intersects the conic. The corresponding tangents to the
conic through these points intersect at a point on the polar line rp.

Proof: It is a consequence of the previous observations.

4 Notable points and lines associated with a
conic.

In what follows we will work on a conic whose associated matrix with respect to a
certain coordinate system is A.

4.1 Singular points.

Definition 4.1 A singular point of a curve is a point of non-differentiability of
it.

Equivalently, a singular point of a curve is a point with two or more tangent
lines.

Equivalently, if every line passing through a point P of a curve intersects the curve
with multiplicity > 1 at P , then P is a singular point.

Let us see when singular points appear in a conic. Let P = (p) be a point on the
conic. We take any line passing through P . To do this we choose any point Q = (q)
that is not on the conic and join it with P . Its equation in homogeneous coordinates
is:

(x) = α(p) + β(q)
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If we intersect with the conic, we obtain the equation:

2αβ(p)tA(q) + β2(q)tA(q) = 0

The point P is singular if the only solution of this equation is β = 0 with multiplicity
2, for any point (q), that is, if:

(p)tA(q) = 0 for any (q).

This is true when:
(p)tA = 0̄ ⇐⇒ A(p) = 0

We conclude the following:

Theorem 4.2 A conic given by a matrix A has singular points if and only if
det(A) = 0. In this case, the conic is called degenerate and the singular points
(affine) are those that satisfy the equation:

A

(
x
y
1

)
= 0̄

4.2 Center.

Definition 4.3 The center of a conic is an affine point which is the symmetry
center of the conic.

Let us denote by (a, b, 1) the homogeneous coordinates of the center. Let us see
how to find it:

- We consider the equation of a straight line that passes through the center and
has a certain direction vector (p, q):

(x, y, t) = (a, b, 1) + λ(p, q, 0).

- We substitute in the conic equation and obtain:

( p q 0 )A

(
p
q
0

)
λ2 + 2 ( a b 1 )A

(
p
q
0

)
λ+ ( a b 1 )A

(
a
b
1

)
= 0.

- For (a, b, 1) to be the center, the solutions of λ must be opposite values for any
direction (p, q) 6= (0, 0). This means that:

( a b 1 )A

(
p
q
0

)
= 0 for any (p, q) 6= (0, 0).

- We deduce that the equation of the center is:

( a b 1 )A = (0, 0, h)

or equivalently: (
a
b
1

)
A =

(
0
0
h

)

4.3 Asymptotes and asymptotic directions.

Definition 4.4 The asymptotic directions are the points at infinity that belong
to the conic.

The asymptotes are the lines that pass through the center and have an asymptotic
direction.

From the definition it is clear that the asymptotic directions (p, q, 0) are obtained
by solving the equation:

( p q 0 )A

(
p
q
0

)
= 0, (p, q) 6= (0, 0)

If we expand this equation, we get:

a11p
2 + 2a12pq + a22q

2 = 0

We see that it is a quadratic equation whose discriminant is −|T |. Therefore:

- If |T | > 0, then there are no asymptotic directions (conic elliptic type ).

- If |T | = 0, there is an asymptotic direction (conic of parabolic type).

- If |T | < 0, there are two asymptotic directions (conic of hyperbolic type).

4.4 Diameters.

Definition 4.5 A diameter of a conic is the (affine) polar line of a point at infinity.
The point at infinity is called the conjugate direction to the diameter.

Remark 4.6 Any diameter passes through the center (or centers) of the conic.

Proof: Suppose A is the matrix of the conic and (a, b, 1) is a center. A diameter
has the equation:

(u1 u2 0 )A

(
x
y
1

)
= 0
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where (u1, u2) is the conjugate direction. On the other hand we saw that if (a, b, 1)
is the center it satisfies

( a b 1 )A = ( 0 0 h ) ⇐⇒ A

(
a
b
1

)
=

(
0
0
h

)

We deduce that:

(u1 u2 0 )A

(
a
b
1

)
= 0

and therefore the diameter contains the center.

4.5 Axes.

Definition 4.7 The diameters perpendicular to their conjugate direction are called
axes. Geometrically, they are symmetry axes.

Remark 4.8 The conjugate directions of the axes are the eigenvectors of T associ-
ated with nonzero eigenvalues.

Proof: Let (u1, u2, 0) be a point at infinity and

(u1 u2 0 )A

(
x
y
1

)
= 0

the equation of the corresponding diameter. Operating, we obtain that the normal
vector of the line is:

(u1 u2 )T

Since this line must be perpendicular to the conjugate direction, this normal vector
must be parallel to (u1, u2) and therefore:

(u1 u2 )T = λ (u1 u2 )

We deduce that (u1, u2) is an eigenvector of T , associated to the eigenvalue λ. Finally
we take into account that if λ = 0, then the previous line would be the line at infinity,
and therefore it is not an axis.

4.6 Vertices.

Definition 4.9 The points of intersection of the axes with the conic are called ver-
tices.

4.7 Foci, directrices and eccentricity.

We will define these three concepts for non-degenerate conics, that is, those whose
associated matrix A is nonsingular.

Definition 4.10 A focus of a conic is a point F which satisfies the following con-
dition: the quotient between the distances from any point of the conic to F and to its
polar line d is constant:

d(X,F )

d(X, d)
= e, for any point X on the conic.

The polar line of a focus is called directrix.

The constant e is called eccentricity.

5 Description of non-degenerate conics.

5.1 The real ellipse.

The reduced equation of an ellipse is:

x2

a2
+
y2

b2
= 1, a, b 6= 0

(we will assume a ≥ b, so that the largest radius of the ellipse is placed on the OX
axis).

When a = b it is a circumference of radius a. Its notable points and lines are:

1. Center: (0, 0).

2. Asymptotic directions: Do not exist.

3. Asymptotes: Do not exist.

4. Diameters: Any line passing through the center.

5. Axes: If a 6= b the axes are x = 0 and y = 0. If a = b any diameter is an axis.

6. Vertices: If a 6= b the vertices are (−a, 0), (a, 0), (0,−b) and (0, b). If a = b any
point on the conic is a vertex.

7. Foci: (−c, 0) and (c, 0) with a2 = b2 + c2 .

8. Directrices: x = a2

c
and x = −a

2

c
.

9. Eccentricity: e = c
a
< 1 (when e = 0 the conic is a circle.)
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All these values are obtained by directly using the associated matrix to the canon-
ical equation of the conic:

A =

( 1
a2

0 0
0 1

b2
0

0 0 −1

)
.

and applying the definitions seen for each of the previous concepts. In particular let
us compute foci, directrices, and eccentricity.

If we consider the point (c, 0) with a2 = b2 + c2, its polar line will be:

(c, 0, 1)A(x, y, 1)t = 0 ⇐⇒ c

a2
x− 1 = 0 ⇐⇒ x =

a2

c
.

Now given any point X = (x, y) on the conic, let us find the quotient between the
distances of that point from the focus and the directrix. First of all, taking into
account that (x, y) satisfies the equation of the conic and that a2 = b2 + c2, we have:

d(F,X) =
√

(xc)2 + y2 =

√
x2 + c2 − 2cx+

a2b2 − b2x2

a2
=

=

√
c2x2

a2
− 2xc+ a2 = a− cx

a
=
a2 − cx

a
.

On the other hand:

d(directrix,X) =
a2

c
− x =

a2 − cx
c

.

Therefore:

d(F,X)

d(d,X)
=

a2−cx
a

a2−cx
c

=
c

a

We deduce that indeed (c, 0) is a focus and the eccentricity is c
a

. Analogously it can
be seen that (−c, 0) is the other focus of the conic.

5.1.1 The ellipse as a locus.

Definition 5.1 The ellipse can also be defined as the locus of the points in the
plane whose sum of distances to the foci is constant.

Let us see that this definition is coherent with the equation and foci given previ-
ously. Given a point (x, y) of the conic we saw that:

d(F1, X) =
a2 − cx

a
; d(F2, X) =

a2 + cx

a
.

Therefore:

d(F1, X) + d(F2, X) =
a2 − cx

a
+
a2 + cx

a
= 2a.

5.2 The hyperbola.

The reduced equation of a hyperbola is:

x2

a2
− y2

b2
= 1, a, b 6= 0 .

Its notable points and lines are:

1. Center: (0, 0).

2. Asymptotic directions: (a, b, 0) and (a,−b, 0).

3. Asymptotes: y = b
a
x and y = − b

a
x.

4. Diameters: Any line passing through the center.

5. Axes: x = 0 and y = 0.

6. Vertices: (−a, 0) and (a, 0).

7. Foci: (−c, 0) and (c, 0) with c2 = a2 + b2 .

8. Directrices: x = a2

c
and x = −a

2

c
.

9. Eccentricity: e = c
a
> 1.

All these values are obtained directly by using the associated matrix to the canon-
ical equation of the conic:

A =

( 1
a2

0 0
0 − 1

b2
0

0 0 −1

)
.

We next compute explicitly the foci, directrices and eccentricity.

If we consider the point (c, 0) with c2 = a2 + b2, its polar line will be:

(c, 0, 1)A(x, y, 1)t = 0 ⇐⇒ c

a2
x− 1 = 0 ⇐⇒ x =

a2

c

Now given a point X = (x, y) of the conic let us find the quotient between the
distances from the point to the focus and the directrix. First of all, taking into
account that (x, y) satisfies the equation of the conic and that c2 = a2 + b2, we have:

d(F,X) =
√

(xc)2 + y2 =

√
x2 + c2 − 2cx+

b2x2 − a2b2

a2
=

=

√
c2x2

a2
− 2xc+ a2 =

∣∣∣cx
a
− a
∣∣∣ =
|cx− a2|

a
.

On the other hand:

d(d,X) = x− a2

c
=
|cx− a2|

c
.
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Therefore:

d(F,X)

d(d,X)
=

∣∣∣∣∣ cx−a
2

a

cx−a2
c

∣∣∣∣∣ =
c

a

We deduce that (c, 0) is a focus and the eccentricity is c
a

. Analogously it can be seen
that (−c, 0) is the other focus of the conic.

5.2.1 The hyperbola as a locus.

Definition 5.2 The hyperbola can also be defined as the locus of the points in the
plane the difference of whose distances to the foci in absolute value is constant.

Let us see that this definition is coherent with the equation and foci given previ-
ously. Given a point (x, y) of the conic we saw that:

d(F1, X) =
|cx− a2|

a
; d(F2, X) =

|cx+ a2|
a

.

Therefore, if x ≥ a

d(F1, X)− d(F2, X) =
cx− a2

a
− cx+ a2

a
= −2a.

and if x ≤ −a:

d(F1, X)− d(F2, X) =
a2 − cx

a
− −cx− a

2

a
= 2a.

5.3 The parabola.

The reduced equation of a parabola is:

x2 = 2py, p 6= 0 .

(We will assume p > 0 so that the parabola is located in the positive half plane.)

Its notable points and lines are:

1. Center: Does not exist (it has an ”improper” center at (0, 1, 0)).

2. Asymptotic directions: (0, 1).

3. Asymptotes: Do not exist.

4. Diameters: Lines parallel to the OY axis.

5. Axes: x = 0.

6. Vertices: (0, 0).

7. Focus: (0, p
2
).

8. Directrices: y = − p
2
.

9. Eccentricity: e = 1.

Again, all these values are obtained directly the associated matrix associated to
the conic:

A =

(
1 0 0
0 0 −p
0 −p 0

)
We compute again the foci, directrices and eccentricity.

If we consider the point F = (0, p
2
) its polar line will be:

(0,
p

2
, 1)A(x, y, 1)t = 0 ⇐⇒ −py − p2

2
= 0 ⇐⇒ y +

p

2
= 0

Now given any point X = (x, y) of the conic let us find the quotient between the
distances from the point to the focus and the directrix. First of all considering that
(x, y) satisfies the equation of the conic:

d(F,X) =

√
x2 + (y − p

2
)2 =

√
2py + y2 +

p2

4
− py =

√
y2 + py +

p2

4
= y +

p

2

Besides:
d(d,X) = y +

p

2
We deduce that indeed (0, p

2
) is a focus and the eccentricity is 1.

5.3.1 The parabola as a locus.

Definition 5.3 The parabola can also be defined as the locus of points in the plane
whose distance from the focus is the same as the distance from the directrix.

This is an immediate consequence of the fact that the eccentricity is 1.

6 Change of coordinate system.

Let R1 = {O; ē1, ē2} and R2 = {Q; ē′1, ē
′
2}. We denote by (x, y) and (x′, y′) respec-

tively the coordinates relative to each of the coordinate systemes. Let us suppose

- The point Q has coordinates (q1, q2) with respect to the first system.

- (e′) = (e)C, where C = MBB′ .

Then we know that the change of coordinate formula is:(
x
y

)
=

(
q1

q2

)
+ C

(
x′

y′

)
or

(
x
y
t

)
=

(
C

q1

q2

0 0 1

)(
x′

y′

t′

)
.
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Suppose we have the equation of the conic given by a matrix A (and the corre-
sponding T of quadratic terms) with respect to the system R1:

(x y t )A

(
x
y
t

)
= 0 ⇐⇒ (x y )T

(
x
y

)
+ 2 ( a13 a23 )

(
x
y

)
+ a33 = 0.

If we perform the change of coordinates in homogeneous coordinates we obtain:

(x′ y′ t′ )BtAB

(
x′

y′

t′

)
= 0 with B =

(
C

q1

q2

0 0 1

)
.

We deduce that the matrix of the conic in the new coordinate system is:

A′ = BtAB

and therefore:

Theorem 6.1 The matrices A,A′ of a conic with respect to two different coordinate
systems R1, R2, are congruent matrices

A′ = BtAB

where B is the change of coordinates matrix from R2 to R1, in homogeneous coordi-
nates.

If we make the change of coordinates in affine coordinates we obtain:

(x′ y′ )CtTC

(
x′

y′

)
+ {terms of degree ≤ 1} = 0

Therefore we deduce that:

Theorem 6.2 The matrices of quadratic terms T, T ′ of a conic with respect to two
different affine coordinate systems R1, R2 are congruent matrices

T ′ = CTCt

where C is the change of coordinates matrix from the base of R2 to that of R1.

7 Classification of conics and reduced equation.

Given a conic defined by a symmetric matrix A, finding its reduced equation consists
of making a change of coordinates so that the equation of the conic with respect to
that new reference is as simple as possible. Specifically we carry out:

1. A rotation. Allows us to place the axis or axes of the conic parallel to the
coordinate axes of the new reference. The matrix of quadratic terms in the new
reference will be diagonal.

2. A translation. That allows us to place the center(s) (if any) of the conic at the
origin of coordinates (otherwise we will take a vertex to the coordinate axis).

Before we start, we point out the following important note:

We will assume that at least one term of the diagonal
of the matrix T of quadratic terms is nonnegative.

If this property is not fulfilled, it is enough to work with the matrix −A instead of
with A. In this way we ensure that T always has at least one positive eigenvalue.

7.1 Step I: Reduction of quadratic terms (the rotation).

Since the matrix T of quadratic terms is symmetric, it has two real eigenvalues λ1

and λ2, with λ1 6= 0. We will assume λ1 > 0. Furthermore, we know that there
exists an orthonormal basis of eigenvectors {ū1, ū2} such that:

T ′ = CtTC with (ū) = (ē)C and T ′ =

(
λ1 0
0 λ2

)
The change of coordinates equation is:(

x
y

)
= C

(
x′

y′

)
so that in the new base the equation of the conic is:

(x′ y′ )CtTC

(
x′

y′

)
+ 2 ( a13 a23 )C

(
x′

y′

)
+ a33 = 0

Operating, we obtain:

λ1x
′2 + λ2y

′2 + 2b13x
′ + 2b23y

′ + b33 = 0

7.2 Step II: Reduction of linear terms (the translation).

Now from the previous equation we complete the terms involving x′ and y′ to the
square of a binomial, adding and subtracting the appropriate terms. Specifically:

- For x′:

λ1x
′2 + 2b13x

′ = λ1(x′2 + 2
b13
λ1
x′ +

b213
λ2
1

)− b213
λ1

= λ1(x′ +
b13
λ1

)2 − b213
λ1

- For y′:
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• If λ2 6= 0:

λ2y
′2 + 2b23y

′ = λ2(y′2 + 2
b23
λ2
y′ +

b223
λ2
2

)− b223
λ2

= λ2(y′ +
b23
λ2

)2 − b223
λ2

• If λ2 = 0 and b23 6= 0:

2b23y
′ + b33 = 2b23(y′ +

b33
2b23

)

We make the corresponding translation in each case and obtain the following
reduced forms:

If λ2 6= 0 If λ2 = 0 and b23 6= 0 If λ2 = b23 = 0

Change of Coordinates: Change of Coordinates: Change of Coordinates:

x′′ = x′ +
b13
λ1

x′′ = x′ +
b13
λ1

x′′ = x′ +
b13
λ1

y′′ = y′ +
b23
λ2

y′′ = y′ +
b33
2b23

Reduced Equation: Reduced Equation: Reduced Equation:

λ1x
′′2 + λ2y

′′2 + c33 = 0 λ1x
′′2 + 2c23y

′′ = 0 λ1x
′′2 + c33 = 0

In other words, we are left with a reduced equation of the form:

λ1x
′′2 + λ2y

′′2 + 2c23y
′′ + c33 = 0

with the following possibilities for the values of λ2, c23, and c33:

1. If λ2 > 0, then c23 = 0 and if:

(a) c33 > 0, then the reduced equation is:

λ1x
′′2 + λ2y

′′2 + c33 = 0 Imaginary ellipse.

(b) c33 = 0, then the reduced equation is:

λ1x
′′2 + λ2y

′′2 = 0 Imaginary lines intersecting at a point.

(c) c33 < 0, then the reduced equation is:

λ1x
′′2 + λ2y

′′2 + c33 = 0 Real ellipse.

2. if λ2 = 0 and

(a) c23 6= 0, then c33 = 0 and the reduced equation is:

λ1x
′′2 + 2c23y

′′ = 0 Parabola.

(b) c23 = 0 and c33 > 0

λ1x
′′2 + c33 = 0 Imaginary parallel lines.

(c) c23 = 0 and c33 = 0

λ1x
′′2 = 0 Real double line.

(d) c23 = 0 and c33 < 0

λ1x
′′2 + c33 = 0 Real parallel lines.

3. If λ2 < 0, then c23 = 0 and if:

(a) c33 6= 0, then the reduced equation is:

λ1x
′′2 + λ2y

′′2 + c33 = 0 Hyperbola.

(b) c33 = 0, then the reduced equation is:

λ1x
′′2 + λ2y

′′2 = 0 Real lines intersecting at a point.

7.3 Classification and reduced equation as a function of
|T | and |A|.

Taking into account that the determinants of T and A are preserved by rotations and
translations, we can rewrite the above classification in terms of |T | and |A|. Again
we assume that T has at least one positive term on the diagonal:

|A| > 0 |A| = 0 |A| < 0

|T | > 0 Imaginary ellipse Imaginary lines intersecting Real ellipse

|T | = 0 Parabola
rg(A) = 2

{
Imag. parallel lines
Real parallel lines

rg(A) = 1 Double Line

Parabola

|T | < 0 Hyperbola Intersecting real lines Hyperbola

When the conic is non-degenerate we can calculate the reduced equation, from the
eigenvalues (at least one positive) λ1, λ2 of T and |A|:
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1. If |T | 6= 0, then we obtain

λ1x
′′2 + λ2y

′′2 + c = 0, with c =
|A|
|T |

If |T | > 0, that is, for an ellipse, to guarantee that the largest radius is on the
new OX axis, the smallest of the two eigenvalues must be taken as λ1.

If |T | < 0, that is, for a hyperbola, to guarantee that the vertices are on the new
OX axis, we must take as λ1 the eigenvalue that has the same sign as det(A).

2. If |T | = 0, then we obtain

λ1x
′′2 − 2cy′′ = 0, with c =

√
−|A|
λ1

with λ1 6= 0.

We can even give the reference in which these reduced forms are obtained:

1. In the case of |T | 6= 0 (ellipse or hyperbola), the base of the new reference is
formed by the normalized eigenvectors of T and the new origin is located at the
center of the conic. One just has to be careful to use for the eigenvectors the
same ordering as the one chosen for the eigenvalues:(

x
y

)
=

(

ce
n
te

r)
+



ei
g
en
v
ec

1

ei
g
en
v
ec

2


︸ ︷︷ ︸
normalized
eigenvec of T

(
x′′

y′′

)

2. In the case of |T | = 0 (parabola), the base of the new reference is formed by
the normalized eigenvectors of T and the new origin is placed at the vertex.
Now, in addition to correctly sorting the eigenvectors, we must check whether
the sign of the eigenvector associated with the null eigenvalue has been chosen
correctly: (

x
y

)
=

(

v
er

te
x)

+



ei
g
en
v
ec

1

ei
g
en
v
ec

2


︸ ︷︷ ︸
normalized
eigenvec of T

(
x′′

y′′

)

In order for the choice of eigenvectors to be consistent with the reduced form of
the parabola, the eigenvector associated with 0 must be oriented in such a way
that:

( a13 a23 )



ei
g
en
v
ec

2

 < 0.

7.4 Classification by diagonalization by congruence.

Another way to classify a conic given by a matrix A is to diagonalize this matrix by
congruence, but with the following restriction:

The last row can neither be added to the others nor multiplied by a
scalar nor changed position.

A ”forbidden” operation with this row would mean that the transformation we
make takes proper points into points at infinity and vice versa.

With this method we will arrive at a diagonal matrix (except if it is a parabola)
that will allow us to easily classify the conic.

Remark 7.1 It must be taken into account that the diagonal form that we obtain in
this way, does NOT necessarily correspond to the reduced equation of the conic.
That is, this method allows us to classify the conic, but NOT to give its reduced
equation.

7.5 Obtaining the lines that form the degenerate conics.

Once the conic has been classified and shown to be degenerate, the most effective
way to find the lines that constitute it is the following:

1. If the conic consists of two parallel lines (real or imaginary) or a double line,
we calculate the line of centers. If it is a double line we are done. Otherwise
we intersect the conic with any line (as simple as possible) and we obtain two
points (real or imaginary). The lines that form the conic are parallel to the line
of centers passing through these points.

2. If the conic consists of two intersecting lines (real or imaginary), we calculate
the center. Then we intersect the conic with any line (as simple as possible) that
does not pass through the center and we obtain two points (real or imaginary).
The lines that form the conic are those that join the center with these points.

8 Pencils of conics

Definition 8.1 Given two conics C1 and C2 with equations:

(x)tA1(x) = 0 and (x)tA2(x) = 0

the pencil of conics generated by them corresponds to the family of conics with
equations:

{α[(x)tA1(x)] + β[(x)tA2(x)] = 0; α, β ∈ IR, (α, β) 6= (0, 0)}

or equivalently:

{[(x)tA1(x)] + µ[(x)tA2(x)] = 0; µ ∈ IR)} ∪ {(x)tA2(x) = 0}
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The conics in a pencil share some common properties with the conics generating
the pencil. For example:

- If P is a common point of C1 and C2, then P belongs to all the conics of the
pencil.

- If r is a tangent to C1 and C2 at a point P , then r is also tangent at P to each
one of the conics in the pencil.

- If r is an asymptote common to C1 and C2, then r is also an asymptote to all
the conics of the pencil.

- If P is a singular point of C1 and C2, then P is a singular point of all the
conics of the pencil.

- If P is the center of C1 and C2, then P is a center of all the conics of the pencil.

Let us see how to build the families of conics that satisfy some of these conditions.

1. Pencil of conics passing through four non-collinear points.

Suppose A,B,C,D are four non-collinear points. We consider the lines

r1 ≡ AB, r2 ≡ CD; s1 ≡ AC; s2 ≡ BD.

The corresponding pencil is:

α(r1 · r2) + β(s1 · s2) = 0

2. Pencil of conics through three non-aligned points and with the tangent line at
one of them fixed.

Suppose A,B,C are three non-aligned points and tgA is the tangent line at A.
We consider the lines

r1 ≡ AB, r2 ≡ AC; s ≡ BC.

The corresponding pencil is:

α(r1 · r2) + β(s · tgA) = 0

2’. Pencil of conics through two points and a fixed asymptote.

It is a particular case of the previous one, if we think that the asymptote is a
tangent line at the point at infinity. Suppose B,C are the points and asympt
is the asymptote. We consider the lines

r1 ≡ {line through B and parallel to asympt}
r2 ≡ {line through C and parallel to asympt} s ≡ BC.

The corresponding pencil is:

α(r1 · r2) + β(s · asympt) = 0

3. Pencil of conics through two points and with the tangent lines to both fixed.

Suppose that A,B are two points and tgA, tgB the corresponding tangents. We
consider the line

r ≡ AB.
The corresponding pencil is:

α(r)2 + β(tgA · tgB) = 0

3’. Pencil of conics through a point, given the tangent line at it and also an asymp-
tote.

Again it is a particular case of the previous one. Suppose A is the point and
tgA the corresponding tangent. Let asympt be the asymptote. We consider the
line

r ≡ {line through A and parallel to asympt}
The corresponding pencil is:

α(r)2 + β(tgA · asympt) = 0

3”. Pencil of conics with two asymptotes known.

Again it is a particular case of the previous one. Suppose that asympt1 and
asympt2 are the two known asymptotes. We consider the line:

r ≡ {line at infinity}

whose homogeneous equation is t = 0 and the affine equation is 1 = 0 (!?). The
corresponding pencil is:

α(1)2 + β(asympt1 · asympt2) = 0
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9 Appendix: planar sections of a cone.

Non-degenerate conics.

Ellipse. Hyperbola. Parabola.

Degenerate conics.

Double line. Two lines. One point.
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