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4. Vector product and mixed product.
In this chapter U will denote an Euclidean space of dimension 3.

1 Vector product.

1.1 Definition.

Definition 1.1 Let x̄, ȳ be two vectors in U and suppose we fix the basis B =
{ē1, ē2, ē3} as a reference. We define the vector product or cross product x̄ ∧ ȳ
of the vectors x̄ and ȳ as follows:

1. If x̄, ȳ are dependent, then x̄ ∧ ȳ = 0̄.

2. If x̄, ȳ are independent, then x̄ ∧ ȳ is the only vector satisfying

(a) x̄ ∧ ȳ is orthogonal to both x̄ and ȳ.

(b) ‖x̄ ∧ ȳ‖ = ‖x̄‖ · ‖ȳ‖ · | sin(x̄, ȳ)|.

(c) The basis {x̄, ȳ, x̄ ∧ ȳ} has the same orientation as B.

This definition is consistent because given two independent vectors x̄, ȳ in a 3-
dimensional Euclidean space, the space of vectors perpendicular to both has dimen-
sion 1. Therefore there is a unique vector in this subspace with a given norm and a
given direction.

1.2 Analytical expression.

Suppose we fix an orthonormal basis B = {ē1, ē2, ē3} which we choose as a positive
orientation reference. Then

Theorem 1.2 The vector product of the vectors ~x = (x1, x2, x3)B and ~y =
(y1, y2, y3)B can be obtained from the following determinant-like expression:

x̄ ∧ ȳ =

∣∣∣∣∣ ē1 ē2 ē3
x1 x2 x3

y1 y2 y3

∣∣∣∣∣
Proof: First, let us note that even though the first row of this determinant is formed
by vectors, the expression itself makes sense. It is enough to take into account that in
each term of the expansion of the determinant there appears only one element from
the first row; the corresponding term must be interpreted as a vector multiplied by
a scalar, which is an operation that makes sense in a vector space.

If we put A =

(
ē1 ē2 ē3
x1 x2 x3

y1 y2 y3

)
the theorem states that:

x̄ ∧ ȳ = z̄ with z̄ = (A11, A12, A13)B ,

where Aij is the cofactor corresponding to the position ij of A. Let us see that z̄
meets the definition of vector product:

1. If x̄, ȳ are dependent, then z̄ = 0 because in this case the last two rows of A
are linearly dependent and therefore all cofactors are null.

2. (a) We have:

x̄ · z̄ = x1A11 + x2A22 + x3A33 =

∣∣∣∣∣x
1 x2 x3

x1 x2 x3

y1 y2 y3

∣∣∣∣∣ = 0

ȳ · z̄ = y1A11 + y2A22 + y3A33 =

∣∣∣∣∣ y
1 y2 y3

x1 x2 x3

y1 y2 y3

∣∣∣∣∣ = 0

2. (b) We want to check that ‖x̄∧ȳ‖ = ‖x̄‖‖ȳ‖| sin(x̄, ȳ)|. This is clearly equivalent
to

‖x̄ ∧ ȳ‖2 = ‖x̄‖‖ȳ‖2(1− cos2(x̄, ȳ)) = ‖x̄‖2‖ȳ‖2 − ‖x̄‖2‖ȳ‖2 cos2(x̄, ȳ) =
= ‖x̄‖2‖ȳ‖2 − (x̄ · ȳ)2

Note that from the proposed formula it follows

‖x̄ ∧ ȳ‖2 = (x1y2 − x2y1)2 + (x1y3 − x3y1)2 + (x2y3 − x3y2)2

and on the other hand

‖x̄‖2 = x21 + x22 + x23, ‖ȳ‖2 = y21 + y22 + y23 , x̄ · ȳ = x1y1 + x2y2 + x3y3.

From here it is easy to deduce the required identity.

2. (c) In order for the basis B′ = {x̄, ȳ, x̄ ∧ ȳ} to have the same orientation as
B, the change-of-basis matrix MBB′ must have a positive determinant. But since
x̄ ∧ ȳ = (A11, A12, A13)B ,

|MBB′ | = |M t
BB′ | =

∣∣∣∣∣ x1 x2 x3
y1 y2 y3
A11 A12 A13

∣∣∣∣∣
and expanding through the last row we obtain

|MBB′ | = A2
11 +A2

12 +A2
13 > 0.
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1.3 Properties.

Taking into account the analytical expression of the vector product, it is easy to
deduce the following properties:

1. x̄ ∧ ȳ = 0̄ ⇐⇒ x̄, ȳ are dependent.

2. The vector product is bilinear, that is:

x̄ ∧ (αȳ + βȳ′) = αx̄ ∧ ȳ + βx̄ ∧ ȳ′.

(αx̄+ βx̄′) ∧ ȳ = αx̄ ∧ ȳ + βx̄′ ∧ ȳ.

3. The vector product is antisymmetric, that is:

x̄ ∧ ȳ = −ȳ ∧ x̄.

1.4 Geometric interpretation.

Theorem 1.3 The norm of the vector product of two vectors x̄, ȳ, coincides with
the area of the parallelogram they determine:

Proof: We have:

Area of parallelogram = ‖x̄‖h = ‖x̄‖‖ȳ‖| sin(x̄, ȳ)| = ‖x̄ ∧ ȳ‖.

2 Mixed Product

Definition 2.1 We define the mixed product of three vectors x̄, ȳ, z̄ of a 3-
dimensional Euclidean space as:

[x̄, ȳ, z̄] = (x̄ ∧ ȳ) · z̄.

As a consequence of the analytical expression we have obtained for the vector
product, we deduce the following expression for the mixed product:

Theorem 2.2 Let x̄, ȳ, z̄ be three vectors of U and B a basis. Then

[x̄, ȳ, z̄] =
√
|GB |

∣∣∣∣∣x
1 x2 x3

y1 y2 y3

z1 z2 z3

∣∣∣∣∣ [x̄, ȳ, z̄] =
1√
|GB |

∣∣∣∣∣x1 x2 x3
y1 y2 y3
z1 z2 z3

∣∣∣∣∣

The mixed product has the following properties:

1. [x̄, ȳ, z̄] = 0 ⇐⇒ {x̄, ȳ, z̄} are dependent.

2. It is trilinear, that is:

[αx̄+ βx̄′, ȳ, z̄] = α[x̄, ȳ, z̄] + β[x̄′, ȳ, z̄].

[x̄, αȳ + βȳ′, z̄] = α[x̄, ȳ, z̄] + β[x̄, ȳ′, z̄].

[x̄, ȳ, αz̄ + βz̄′] = α[x̄, ȳ, z̄] + β[x̄, ȳ, z̄′].

3. It is antisymmetric, that is:

[x̄, ȳ, z̄] = −[ȳ, x̄, z̄] = −[x̄, z̄, ȳ] = −[z̄, ȳ, x̄].

Finally, the mixed product of three vectors admits the following geometric inter-
pretation.

Theorem 2.3 The absolute value of the mixed product of three vectors x̄, ȳ, z̄ coin-
cides with the volume of the parallelepiped they determine.

Proof: We have:

Volume of the parallelepiped = Base area·H = ‖x̄∧ȳ‖‖z‖ cos(θ) = |(x̄∧ȳ)·z̄| = |[x̄, ȳ, z̄]|.

30


