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3. Orthogonal transformations.
Throughout the chapter U will denote an Euclidean vector space.

1 Definition.

Definition 1.1 A orthogonal transformation f of an Euclidean space U is an
endomorphism that preserves the scalar product.

f(x̄) · f(ȳ) = x̄ · ȳ for any x̄, ȳ ∈ U.

Let us see that preservation of the scalar product is actually sufficient, that is:

Proposition 1.2 If a mapping f : U −→ U preserves the scalar product then it is
a linear mapping.

Proof: Fix x̄, ȳ ∈ U , α, β ∈ IR. We want to prove that

f(αx̄+ βȳ) = αf(x̄) + βf(ȳ).

We have

(f(αx̄+ βȳ)− αf(x̄)− βf(ȳ)) · (f(αx̄+ βȳ)− αf(x̄)− βf(ȳ)) =

= f(αx̄+ βȳ) · f(αx̄+ βȳ) + α2f(x̄) · f(x̄) + β2f(ȳ) · f(ȳ)−
−2αf(αx̄+ βȳ) · f(x̄)− 2βf(αx̄+ βȳ) · f(ȳ) + 2αβf(x̄) · f(ȳ) =

= (αx̄+ βȳ) · (αx̄+ βȳ) + α2x̄ · x̄+ β2ȳ · ȳ−
−2α(αx̄+ βȳ) · x̄− 2β(αx̄+ βȳ) · ȳ + 2αβx̄ · ȳ =

= ((αx̄+ βȳ)− αx̄− βȳ) · ((αx̄+ βȳ)− αx̄− βȳ) = 0

So f(αx̄+ βȳ)− αf(x̄)− βf(ȳ) = 0.

Using this proposition we can give a characterization of orthogonal transforma-
tions:

Theorem 1.3 f : U −→ U is an orthogonal transformation if and only if it trans-
forms orthonormal bases into orthonormal bases.

Proof: If f is an orthogonal transformation, it is clear that it takes orthonormal
bases into orthonormal bases. Just take into account that f preserves the scalar
product and that an orthogonal system is linearly independent.

Let us try the converse. Bearing in mind the previous proposition, it is enough to
assume that f takes orthonormal bases into orthonormal bases and prove that then
f preserves the scalar product.

Let B = {ū1, . . . , ūn} be an orthonormal basis of U and f(B) = {f(ū1), . . . , f(ūn)}
the orthonormal basis image of B. Given x̄, ȳ ∈ U with coordinates (xi), (yj) with
respect to the basis B, we have:

f(x̄) · f(ȳ) = f(xiūi) · f(yj ūj) = xiyjf(ūi) · f(ūj).

Taking into account that the bases B and f(B) are orthonormal, we deduce the
following:

f(x̄) · f(ȳ) = xiyjf(ūi) · f(ūj) = xiyjδij = xiyj ūi · ūj = (xiūi) · (yj ūj) = x̄ · ȳ.

2 Properties.

Let f : U −→ U be an orthogonal transformation. Let us see some of the main
properties it satisfies.

1. It preserves the scalar product.

2. It ransforms orthonormal bases into orthonormal bases.

3.

4. It preserves the norm:

‖f(x̄)‖2 = f(x̄) · f(x̄) = x̄ · x̄ = ‖x̄‖2.

5. It preserves angles:

cos(f(x̄), f(ȳ)) =
f(x̄) · f(ȳ)

‖f(x̄)‖‖f(ȳ)‖ =
x̄ · ȳ
‖x̄‖‖ȳ‖ = cos(x̄, ȳ).

6. It is bijective.

Proof: It is onto because it takes orthonormal bases into orthonormal bases.
By the dimensions formula, it is also injective.

We can also see directly that it is injective by checking that the kernel is {0}.

f(x̄) = 0̄ ⇒ x̄ · x̄ = f(x̄) · f(x̄) = 0 ⇒ x̄ = 0̄.

7. The composition of orthogonal transformations is an orthogonal transformation.

Proof: If f and g are orthogonal transformations, we have:

(g ◦ f)(x̄) · (g ◦ f)(ȳ) = g(f(x̄)) · g(f(ȳ)) = f(x̄) · f(ȳ) = x̄ · ȳ.

8. The inverse of an orthogonal transformation is an orthogonal transformation.

Proof: If f is orthogonal

f−1(x̄) · f−1(ȳ) = f(f−1(x̄)) · f(f−1(ȳ)) = x̄ · ȳ.
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9. If f is an endomorphism and B has a basis of U , we have:

f is an orthogonal transformation ⇐⇒ FB
tGBFB = GB

Proof: We have:

f orthogonal ⇐⇒ f(x̄) · f(ȳ) = x̄ · ȳ, ∀x̄, ȳ ∈ U ⇐⇒
⇐⇒ (FB(x))tGBFB(y) = (x)GB(y)t ∀x̄, ȳ ∈ U ⇐⇒
⇐⇒ (x)tFB

tGBFB(y) = (x)GB(y)t ∀x̄, ȳ ∈ U ⇐⇒
⇐⇒ FB

tGBFB = GB .

10. If f is an endomorphism and B is an orthonormal basis of U , we have:

f orthogonal transformation ⇐⇒ FB
tFB = Id ⇐⇒ FB is orthogonal

Proof: It is a consequence of the previous property, taking into account that
the Gram matrix relative to an orthonormal basis is the identity.

11. If f is an orthogonal transformation and B a basis of U , then |FB | = ±1.

Proof: We have:

|GB | = |FBtGBFB | = |FB ||GB ||FB | ⇒ |FB |2 = 1 ⇒ |FB | = ±1.

3 Eigenvalues and eigenvectors.

Proposition 3.1 Any real eigenvalue of an orthogonal transformation is either 1
or −1.

Proof: If t : U −→ U is an orthogonal transformation, λ is a real eigenvalue and x̄
is a nonzero eigenvector associated to λ, we have:

t(x̄) · t(x̄) = x̄ · x̄ ⇒ λ2x̄ · x̄ = x̄ · x̄ ⇒ λ2 = 1.

Proposition 3.2 If t : U −→ U is an orthogonal transformation, the characteris-
tic subspaces associated with dfferent eigenvalues are orthogonal.

Proof: Recall that t can only have 1 and −1 as its real eigenvalues. Let x̄ ∈ S1,
ȳ ∈ S−1. We have

x̄ · ȳ = t(x̄) · t(ȳ) = −x̄ · ȳ ⇒ 2x̄ · ȳ = 0 ⇒ x̄ · ȳ = 0.

Therefore S1 and S−1 are orthogonal.

Theorem 3.3 If an orthogonal transformation t is diagonalizable, then it admits an
orthonormal basis of eigenvectors.

Proof: By the previous theorem, the characteristic subspaces corresponding to dif-
ferent eigenvalues are orthogonal. Therefore, if the transformation is diagonalizable,
we can build a basis of orthogonal eigenvectors by joining bases of each one of the
two characteristic subspaces formed by orthogonal eigenvectors.

4 Relative orientation of the bases.

Definition 4.1 Let U be a finite-dimensional real vector space. Two bases B and B′

are said to have the same orientation if the corresponding change-of-basis matrix
has a positive determinant:

|MBB′ | > 0

Proposition 4.2 The relation ”to have the same orientation” is an equivalence re-
lation. Furthermore, its quotient set has two elements.

Proof: Let us see that it satisfies the three properties that characterize equivalence
relations.

1. Reflexive: MBB = Id ⇒ |MBB | = 1 ⇒ every basis B has the same
orientation as itself.

2. Symmetric: if B,B′ have the same orientation, then |MB′B | > 0, and:

|MB′B | = |MBB′
−1| = 1

|MBB′ |
> 0.

3. Transitive:

B,B′ have the same orientation ⇒ |MBB′ | > 0
B′, B′′ have the same orientation ⇒ |MB′B′′ | > 0

}
⇒

⇒ |MBB′′ | = |MBB′MB′B′′ | = |MBB′ ||MB′B′′ | > 0.

Therefore B and B′′ have the same orientation.

Now let us prove that there are only two equivalence classes. Let B =
{ū1, ū2, . . . , ūn} be a basis of U . It is clear that the basis:

B′ = {−ū1, ū2, . . . , ūn}

has a different orientation than B′, because the change-of-basis matrix is:

MBB′ =


−1 0 . . . 0

0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 ⇒ |MB′B | = −1.
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Let us see that any other basis B′′ has the same orientation as one of these two. If
B′′ has a different orientation than B, then |MB′′B | < 0 and:

|MB′B′′ | = |MB′B ||MBB′′ | > 0.

and therefore B′′ has the same orientation as B′.

5 Direct and inverse orthogonal transforma-
tions.

Definition 5.1 Let t : U −→ U be an orthogonal transformation, B a basis of U
and let TB the matrix associated to t with respect to the basis B . We say that t is

- a direct transformation if |TB | = 1.

- an inverse transformation if |TB | = −1.

Bearing in mind the change-of-basis formula for the matrix associated with t

T ′B = (MBB′)
−1TBMBB′ ,

we see that the definition does not depend on the chosen basis, since similar matrices
have the same determinant.

On the other hand, we can give the following characterization of direct and inverse
transformations:

Proposition 5.2 Let t : U −→ U be an orthogonal transformation. Then t is

- direct if and only if it preserves the orientation of the bases.

- inverse if and only if it changes the orientation of the bases.

Proof: Let B = {ū1, . . . , ūn} be a basis of U . Let t(B) = {t(ū1), . . . , t(ūn)} be the
image of this basis. If TB is the matrix of the application t with respect to the basis
B, we have:

(t(ūj) = (ūi)TB .

Therefore, the change-of-basis matrix between B and t(B) is:

MBt(B) = T.

So:

t direct ⇐⇒ |MBt(B)| = |T | = 1 ⇐⇒ B and t(B) have the same orientation.
t inverse ⇐⇒ |MBt(B)| = |T | = −1 ⇐⇒ B and t(B) have different orientations.

The following properties hold:

1. The composition of two direct orthogonal transformations is direct.

2. The composition of two inverse orthogonal transformations is direct.

3. The composition of two orthogonal transformations, of which one is direct and
the other one is inverse, is inverse.

4. The inverse of a direct orthogonal transformation is direct.

5. The inverse of an inverse orthogonal transformation is inverse.

6 Orthogonal transformations on IR2.

We will start by describing all orthogonal transformations of IR2

6.1 Rotations on IR2.

Theorem 6.1 Let B = {ē1, ē2} be an orthonormal basis of IR2 and α any angle.
The associated matrix of the rotation of angle α with respect to the orientation
given by the basis B is

TB =

(
cos(α) − sin(α)
sin(α) cos(α)

)
.

Proof: If we consider the following drawing:

t(ē1) = cos(α)ē1 + sin(α)ē2
t(ē2) = − sin(α)ē1 + cos(α)ē2

Therefore we obtain the matrix TB described in the statement.

6.1.1 Procedure to find the matrix of a rotation of a given angle
with respect to an arbitrary basis.

Suppose we are given a not necessarily orthonormal basis B = {ē1, ē2} and we
are asked to calculate the matrix of a rotation of angle α relative to this basis and
with respect to the orientation it defines.

The steps to obtain the matrix are the following:

1. Find an orthonormal basis B′ = {ū′1, ū′2}.

22
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2. Check that this basis has the same orientation as the initial one, that is,
|MB′B | > 0. If it does not, we change the vector ū′1 by −ū′1.

3. The rotation matrix with respect to the basis B′ is:

TB′ =

(
cos(α) − sin(α)
sin(α) cos(α)

)
.

4. We perform a change of basis on the matrix TB′ :

TB = MBB′TB′(MBB′)
−1.

It must be taken into account that, in all the steps where the scalar product (or
norms) appears, we need to use the Gram matrix corresponding to the basis in which
one is working. If this basis is orthonormal, the Gram matrix is the identity and the
scalar product is the usual one.

6.2 Symmetries in IR2.

Theorem 6.2 Let B = {ē1, ē2} be a orthogonal basis of IR2. The matrix associated
to the symmetry with respect to the axis generated by ē1 is

TB =

(
1 0
0 −1

)
.

Proof: Just take into account that the axis of symmetry is invariant, while the
vectors orthogonal to it have their sign changed:

t(ē1) = ē1; t(ē2) = −ē2.

Remark 6.3 We can also define a symmetry about the origin, but it is the same
transformation as a rotation of angle π. The matrix associated with this symmetry
with respect to any basis is −Id.

6.2.1 Procedure to find the matrix of a symmetry in any basis.

Suppose we are given a not necessarily orthonormal basis B = {ē1, ē2} and
we are asked to calculate the matrix relative to B of a symmetry about the axis
generated by a vector ū1.

The steps to find this matrix are the following:

1. We complete ū1 to an orthogonal basis: B′ = {ū1, ū2}.
2. The symmetry matrix with respect to this basis will be

TBB′ =

(
1 0
0 −1

)
.

3. We perform the change of basis on the matrix TB′ :

TB = MBB′TB′(MBB′)
−1.

6.3 Classification of orthogonal transformations on IR2.

Theorem 6.4 Every orthogonal transformation t on IR2, other than the identity, is
a rotation or a symmetry about an axis.

Proof: Let T be the matrix of t with respect to an orthonormal basis B. We know
that

T tT = Id. |T | = ±1. The real eigenvalues of T are 1 or −1.

Only the following possibilities exist:

1. T has a unique real eigenvalue λ = 1 with multiplicity 2. Then T is similar to
the identity and therefore actually T = Id.

2. T has a unique real eigenvalue λ = −1 with multiplicity 2. So T is similar
to −Id and indeed T = −Id. This is a rotation of angle π or equivalently a
symmetry with respect to the origin.

3. T has eigenvalues λ1 = 1 and λ2 = −1. Then T is similar to the matrix

TBB′ =

(
1 0
0 −1

)
In particular, there is an orthonormal basis B′ with respect to which the matrix
of t is the previous one. We deduce that it is a symmetry with respect to an
axis. Bearing in mind that this axis is formed by vectors which remain invariant
under this symmetry, we deduce that the axis is the characteristic subspace S1.

4. T has no real eigenvalues. Suppose T has the form

T =

(
a b
c d

)
Since TT t = Id

a2 + c2 = 1; ab+ cd = 0; b2 + d2 = 1;

Furthermore, the characteristic polynomial is:

|T − λId| = λ2 − (a+ d)λ+ ad− bc = 0

Taking into account that the discriminant is (a+ d)2 − 4(ad− bc), since it does
not have any real eigenvalue we deduce

ad− bc > 0.
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We can put

a = cos(α), c = sin(α); b = sin(β), d = cos(β).

for certain values α, β ∈ IR.

Now:

ab+ cd = 0 ⇒ cos(α) sin(β) + sin(α) cos(β) = 0 ⇒ sin(α+ β) = 0.
ad− bc > 0 ⇒ cos(α) cos(β)− sin(α) sin(β) > 0 ⇒ cos(α+ β) > 0.

We deduce that α+ β = 0 and therefore:

b = sin(β) = sin(−α) = − sin(α) = −a.
d = cos(β) = cos(−α) = cos(α) = c.

We see that T can be written as:(
cos(α) − sin(α)
sin(α) cos(α)

)
and therefore t is a rotation of angle α with respect to the orientation given by
the basis B.

We summarize the classification in the following table:

Orthogonal transformations in IR2

Eigenvalues Classification Type

{1, 1} Identity Direct

{1,−1} Symmetry with respect to S1. Inverse

{−1,−1}
Symmetry about the origin.

m
Rotation of angle π.

Direct

not real

Angle rotation α:

TB =

(
cos(α) − sin(α)
sin(α) cos(α)

)
B ORTHONORMAL basis

Direct

7 Orthogonal transformations on IR3.

We will start by describing the orthogonal transformations of IR3.

7.1 Rotations in IR3.

Theorem 7.1 Let B = {ē1, ē2, ē3} be an orthonormal basis of IR3 and α any
angle. The rotation of angle α about the semi-axis generated by ē1 and with
respect to the orientation given by the basis B has the associated matrix:

TB =

(
1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)

)
.

Proof: It is enough to take into account that the semi-axis of rotation ē1 remains
invariant due to the rotation. Besides, we apply the rotation matrix on IR2 we have
seen in the previous section to the perpendicular plane generated by the orthonormal
basis {ē2, ē3}.

Remark 7.2 It must be taken into account that in order for a rotation in IR3 to be
well defined the following information is essential:

1. the semi-axis of rotation (not just the axis).

2. the orientation that serves as a reference.

3. the angle of rotation.

The first two data allow us to identify in which direction the positive angles are
taken.

7.1.1 Procedure to find the matrix of a rotation in IR3 relative to
an arbitrary basis.

Suppose we are given a not necessarily orthonormal basis B = {ū1, ū2, ū3} and
we are asked to calculate the matrix with respect to the basis B of a rotation of
angle α, semiaxis v̄ and with the orientation given by the basis B.

The steps to find this matrix are the following.

1. Find an orthonormal basis B′ = {v̄′1, v̄′2, v̄′3} , such that

v̄′1 =
v̄

‖v̄‖

2. Check that this basis has the same orientation as the starting one, that is,
|MBB′ | > 0. If it did not have it, we change the vector v̄′2 to −v̄′2.

3. The rotation matrix with respect to the basis B′ is:

TB′ =

(
1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)

)
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4. We perform the change of basis on the matrix TB′ :

TB = M ′BBTB′M
−1
BB′ .

It will be useful to note that if the starting basis B was already orthonor-
mal, then the step matrix MBB′ is orthogonal and its inverse coincides
with its transpose.

As before, on all the steps where the scalar product (or norms) appears, we must
use the corresponding Gram matrix with respect to the basis we have fixed. If this
basis is orthonormal, then the Gram matrix is the identity and the scalar product is
the usual one.

7.2 Symmetries on IR3

7.2.1 Symmetry about the origin.

Theorem 7.3 Let B be any basis of IR3. The matrix associated to the symmetry
about the origin is TB = −Id.

Proof: Just take into account that the symmetry about the origin takes every vector
to its opposite.

7.2.2 Symmetry about a line.

Theorem 7.4 Let B = {ē1, ē2, ē3} be a orthogonal basis of IR3. The matrix asso-
ciated to the symmetry about the axis generated by ē1 is

TB =

(
1 0 0
0 −1 0
0 0 −1

)
.

Proof: Just take into account that the axis of symmetry is invariant, while all
vectors orthogonal to it are transformed into their opposites:

t(ē1) = ē1; t(ē2) = −ē2; t(ē3) = −ē3.

7.2.3 Symmetry about a plane.

Theorem 7.5 Let B = {ē1, ē2, ē3} be a orthogonal basis of IR3. The matrix asso-
ciated to the symmetry about the plane generated by ē1, ē2 is

TB =

(
1 0 0
0 1 0
0 0 −1

)
.

Proof: Just take into account that the plane of symmetry is invariant, while all
vectors orthogonal to it are transformed into their opposites:

t(ē1) = ē1; t(ē2) = ē2; t(ē3) = −ē3.

7.2.4 Procedure to find the matrix of a symmetry relative to an
arbitrary basis.

Suppose we are given a not necessarily orthonormal basis B = {ē1, ē2, ē3} and
we are asked to calculate the matrix of a symmetry about either

1. the axis generated by a vector ū1.

2. the plane generated by a vector ū1, ū2.

The steps to find this matrix are as follows.

1. Symmetry about the axis generated by ū1.

(a) We complete ū1 to an orthogonal basis: B′ = {ū1, ū2, ū3}. Actually we
only need both ū2 and ū3 to be orthogonal to ū1.

(b) The matrix of the symmetry with respect to this basis will be:

TBB′ =

(
1 0 0
0 −1 0
0 0 −1

)
.

(c) We perform the change of basis on the matrix TB′ :

TB = M ′BBTB′M
−1
BB′ .

2. Symmetry with respect to the plane generated by ū1, ū2.

(a) We complete ū1 to a basis: B′ = {ū1, ū2, ū3}, with ū3 orthogonal to the
plane L{ū1, ū2}.

(b) The matrix of the symmetry with respect to this basis will be:

TB′ =

(
1 0 0
0 1 0
0 0 −1

)
.

(c) We perform the change of basis on the matrix TB′ :

TB = M ′BBTB′M
−1
BB′ .
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7.3 Classification of orthogonal transformations in IR3.

Theorem 7.6 Every orthogonal transformation t in IR3 other than the identity is
either

- a rotation, or

- a symmetry with respect to a point, a line or a plane, or

- the composition of a rotation and a symmetry about the plane orthogonal to the
axis of rotation.

Proof: Let T be the matrix of t with respect to an orthonormal basis B. We know
that

TT t = Id. |T | = ±1. The real eigenvalues of T are 1 or −1.

One of the following must be true:

1. T has a unique real eigenvalue λ = 1 with multiplicity 3. Then T is similar to
the identity and therefore actually T = Id.

2. T has a unique real eigenvalue λ = −1 with multiplicity 3. So T is similar to
−Id and actually T = −Id. It is a symmetry about the origin.

3. T has eigenvalues λ1 = 1, with multiplicity 2, and λ2 = −1, with multiplicity
1. Then T is similar to the matrix

TB′ =

(
1 0 0
0 1 0
0 0 −1

)
In particular, there is an orthonormal basis B′ with respect to which the matrix
of t is the previous one. We deduce that it is a symmetry with respect to a plane.
Taking into account that this plane is formed by vectors which remain invariant
under the symmetry, the plane of symmetry is the characteristic subspace S1.

4. T has eigenvalues λ1 = 1, with multiplicity 1, and λ2 = −1, with multiplicity
2. Then T is similar to the matrix

TB′ =

(
1 0 0
0 −1 0
0 0 −1

)
Arguing as before, we see that t is a symmetry with respect to an axis corre-
sponding to the characteristic subspace S1.

5. T has a unique real eigenvalue λ1 = 1 with multiplicity 1. So IR3 can be
decomposed as:

IR3 = S1 ⊕ S⊥1
where S⊥1 is a 2-dimensional subspace invariant under t. The restriction of
t to S⊥1 is an orthogonal transformation with no real eigenvalues. From the
classification of orthogonal transformations in IR2 we deduce that it is a rotation.

Therefore there exists an orthonormal basis B′ = {ū1, ū2, ū3} with

S1 = {ū1} and S⊥1 = {ū2, ū3}

relative to which the matrix associated to t is:

TB′ =

(
1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)

)

and therefore it is a rotation of angle α with respect to the orientation given by
the basis B′ and the semi-axis ū1.

6. T has a unique real eigenvalue λ1 = −1 with multiplicity 1. Arguing as before,
we deduce that there exists an orthonormal basis B′ = {ū1, ū2, ū3} with

S−1 = {ū1} and S⊥−1 = {ū2, ū3}

relative to which the matrix associated to t is:

TB′ =

(−1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)

)
=

(−1 0 0
0 1 0
0 0 1

)(
1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)

)
,

and therefore t is the composition of a rotation of angle α about the semi-axis
ū1 and with respect to the orientation given by the basis B′, and a symmetry
about the plane S⊥−1.
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Unit II. Chapter 3. Orthogonal transformations. Álgebra Lineal II. Departament of Mathematics, UDC.

We summarize the classification in the following table:

Orthogonal transformations on IR3

Eigenvalues Classification Type

{1, 1, 1} Identity Direct

{1, 1,−1} Symmetry about the plane S1. Inverse

{1,−1,−1} Symmetry about the S1 axis. Direct

{−1,−1,−1} Symmetry about the origin. Inverse

1, mult=1.

Rotation of angle α with respect to the semi-axis ū1:

TB =

 1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)


B = {ū1, ū2, ū3} ORTHONORMAL basis
S1 = L{ū1}
S⊥1 = L{ū2, ū3}
Orientation given by basis B.

Direct

−1, mult=1.

Composition of:

- Rotation of angle α with respect to the semi-axis ū1:

TB =

−1 0 0
0 cos(α) sin(α)
0 − sin(α) cos( alpha)


B = {ū1, ū2, ū3} ORTHONORMAL basis
S−1 = L{ū1}
S⊥−1 = L{ū2, ū3}
Orientation given by basis B.

- Symmetry about the plane S⊥−1.

Inverse

7.4 An alternative method for classifying orthogonal
transformations.

We will expose an alternative method for classifying orthogonal transformations in
dimensions 2 and 3. This method is based on the following known result:

Proposition 7.7 Neither the determinant nor the trace of the matrix associated
with an endomorphism depend on the chosen basis.

Given that we have already obtained the associated matrices to each type of or-
thogonal transformation relative to convenient orthonormal bases let us see how to
classify them.

7.4.1 Orthogonal transformations on IR2.

If the orthogonal transformation is a symmetry about a straight line, we saw that
the associated matrix with respect to a suitable orthonormal basis (one of its vectors
must generate the axis of symmetry) is(

1 0
0 −1

)
We get determinant −1 and trace 0.

If the orthogonal transformation is a rotation, the associated matrix relative to an
orthonormal basis is: (

cos(α) −sin(α)
sin(α) cos(α)

)
We have determinant 1 and trace 2cos(α). This case includes the particular situations
in which the angle is 0 and therefore the transformation is the identity or the angle
is 180o and the transformation is a symmetry about the origin.

We see that the trace allows us to calculate the cosine of the angle in such a way
that it can be uniquely chosen in the interval [0, π]. The problem which remains
to be solved is whether this angle should be taken with a positive or negative sign,
depending on the orientation we are handling.

To do this, if we work with the orientation given by the basis B = {ē1, ē2}, we
consider the basis B′ = {ē1, f(ē1)}. If both bases have the same orientation, then
the angle must be taken with a positive sign; if they are different, it is taken with a
negative sign.

We summarize all this in the following table:

Orthogonal transformations on IR2

Orientation given by B = {ē1, ē2}. F associated matrix wrt any basis

Det(F) Trace(F) Classification

1 2 Identity

1 −2
Symmetry about the origin.

m
Rotation of angle π.

1 6= 2,−2

Rotation of angle α:
B′ = {ē1, f̄(e1)}

If |MBB′ | > 0, α = +arc cos(trace(F )/2).
If |MBB′ | < 0, α = −arc cos(trace(F )/2).

−1 0 Symmetry about S1
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7.4.2 Orthogonal transformations on IR3.

By analyzing trace and the determinant for each type of transformation, we obtain
the following classification table.

Orthogonal transformations in IR3

Orientation given by basis B. F associated matrix wrt any basis

Det(F) Trace(F) Classification

1 3 Identity

1 −1 Symmetry about line S1

1 6= 3,−1

Rotation of angle α with respect to the semi-axis ū1:
ū1 = eigenvector associated to 1
v̄ linearly independent with ū1

B′ = {ū1, v̄, f̄(v)}
If |MBB′ | > 0, α = +arc cos((trace(F )− 1)/2).
If |MBB′ | < 0, α = −arc cos((trace(F )− 1)/2).

−1 −3 Symmetry about the origin.

−1 1 Symmetry about the plane S1

−1 6= −3, 1

Composition of one rotation and one symmetry
- Rotation of angle α with respect to the semi-axis ū1:

ū1 = eigenvector associated to −1
v̄ linearly independent with ū1

B′ = {ū1, v̄, f̄(v)}
If |MB′B | > 0, α = +arc cos((trace(F ) + 1)/2).
If |MB′B | < 0, α = −arc cos((trace(F ) + 1)/2).

- Symmetry with respect to the plane S⊥−1.
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