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2. Orthogonality.
Throughout this chapter the symbol U will stand for a fixed Euclidean

vector space.

1 Orthogonal vectors.

Definition 1.1 Two vectors x̄, ȳ ∈ U are said to be orthogonal if

x̄ · ȳ = 0.

Let us see some properties that follow from the previous definition:

1. The only vector which is orthogonal to itself is 0̄.

Proof: Just take into account that the scalar product is associated to a positive
definite quadratic form. Therefore:

x̄ · x̄ = 0 ⇐⇒ x̄ = 0̄.

2. Two nonzero vectors are orthogonal if and only if they form an angle of π
2

.

Proof: If x̄, ȳ are two nonzero vectors:

x̄, ȳ orthogonal ⇐⇒ x̄·ȳ = 0 ⇐⇒ cos(x̄, ȳ) =
x̄ · ȳ
‖x̄‖‖ȳ‖ = 0 ⇐⇒ 6 (x̄, ȳ) =

π

2
.

3. Pythagorean Theorem. Two vectors x̄, ȳ are orthogonal if and only if

‖x̄+ ȳ‖2 = ‖x̄‖2 + ‖ȳ‖2.

Proof: Just take into account that:

‖x̄+ ȳ‖2 = (x̄+ ȳ) · (x̄+ ȳ) = ‖x̄‖2 + ‖ȳ‖2 + 2x̄ · ȳ.

2 Orthogonal systems.

2.1 Definition

Definition 2.1 A system of vectors {ū1, . . . , ūn} is said to be orthogonal, if its
vectors are pairwise orthogonal:

ūi · ūj = 0 for any i 6= j, i, j ∈ {1, . . . , n}.

Definition 2.2 A system of vectors {ū1, . . . , ūn} is said to be orthonormal, if it
is orthogonal and all its vectors are unitary:

ūi · ūj = δji for any i, j ∈ {1, . . . , n}.

Proposition 2.3 Any orthogonal system which does not contain the vector 0̄ is lin-
early independent.

Proof: Suppose {ū1, . . . , ūn} is an orthogonal system none of whose vectors is zero.
Suppose there are scalars α1, . . . , αn satisfying:

α1ū1 + . . .+ αnūn = 0̄.

If we perform the scalar product by a vector ūj we get:

(α1ū1 + . . .+ αnūn) · ūj = 0̄ · ūj = 0 ⇒ α1ū1 · ūj + . . .+ αnūn · ūj = 0̄

Taking into account that it is an orthogonal system, ūi · ūj = 0 if i 6= q. Hence

αj ūj · ūj = 0.

Since ūj 6= 0, we deduce ūj ·ūj 6= 0 and we obtain that αj = 0 for every j ∈ {1, . . . , n}.

2.2 Orthogonal bases.

Definition 2.4 An orthogonal basis is a basis which is also an orthogonal system.

From the definition of an orthogonal system it is clear that:

B is an orthogonal basis⇐⇒ The Gram matrix GB is diagonal

Definition 2.5 An orthonormal basis is a basis which is also an orthonormal
system.

From the definition of orthonormal system it follows that:

B is an orthonormal basis⇐⇒ The Gram matrix GB is the identity

In our study of symmetric quadratic forms we saw that all of them are diagona-
lizable by congruence. If they are also positive definite, then they are congruent to
the identity matrix. Applying this fact to a Euclidean space we deduce:

Theorem 2.6 Every Euclidean space has an orthonormal basis.
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2.3 Gram-Schmidt orthogonalization method.

This is a procedure for obtaining an orthogonal basis {ū1, . . . , ūn} starting from any
basis {ē1, . . . , ēn}.

The procedure is as follows:

1. We take ū1 = ē1.

2. We define ū2 = ē2 + α1
2ū1.

To find the parameter α1
2 we require that ū2 be orthogonal with ū1:

ū2 · ū1 = 0 ⇒ ē2 · ū1 = −α1
2ū1 · ū1 ⇒ α1

2 = − ē2 · ū1

ū1 · ū1
.

Now L{ē1, ē2} = L{ū1, ū2}.

3. We define ū3 = ē3 + α1
3ū1 + α2

3ū2.

To find the parameters we require that ū3 be orthogonal to both ū1 and ū2:

ū3 · ū1 = 0 ⇒ 0 = ē3 · ū1 + α1
3ū1 · ū1 + α2

3ū2 · ū1 ⇒ α1
3 = − ē3 · ū1

ū1 · ū1
.

ū3 · ū2 = 0 ⇒ 0 = ē3 · ū2 + α1
3ū1 · ū2 + α2

3ū2 · ū2 ⇒ α2
3 = − ē3 · ū2

ū2 · ū2
.

Now L{ē1, ē2, ē3} = L{ū1, ū2, ū3}.

4. We continue this process until completing the basis. Specifically, the k-th
step is as follows:

We define ūk = ēk + α1
kū1 + . . .+ αk−1

k ūk−1 with:

αik = − ēk · ūi
ūi · ūi

, i = 1, . . . , k − 1,

where L{ē1, . . . , ēk} = L{ū1, . . . , ūk}.
It is interesting to note that all of these expressions make sense because the
vectors ūi are independent. In particular they are not null and ūi · ūi 6= 0.

On the other hand we also see that if ēk is already orthogonal to ū1, . . . , ūk−1,
then ūk = ēk.

This method can also be used to build an orthonormal basis. To do this, we
simply have to normalize the obtained basis. In general, if {ū1, . . . , ūn} is an
orthogonal basis, then

{ ū1

‖ū1‖
, . . . ,

ūn
‖ūn‖

}

is an orthonormal basis. This process is called normalization.

2.4 Incomplete orthogonal basis theorem.

Theorem 2.7 Let U be an n-dimensional Euclidean space. If {ū1, . . . , ūp} is an
orthogonal system of p nonzero vectors, with p < n, then there exists a system of
vectors {ūp+1,, . . . , ūn} whose union with the first:

{ū1, . . . , ūp, ūp+1,, . . . , ūn}

is an orthogonal basis.

Proof: Given the system {ū1, . . . , ūp}, we know that we can complete it up to a
basis of U :

{ū1, . . . , ūp, ēp+1,, . . . , ēn}
We now apply Gram-Schmidt orthogonalization method to this basis. The first p
vectors remain the same because they already form an orthogonal system. In this
way we will obtain an orthogonal basis:

{ū1, . . . , ūp, ūp+1,, . . . , ūn}.

3 Some properties of orthonormal bases.

In this section we will see the advantages of choosing an orthonormal basis when
working in the context of an Euclidean space.

3.1 Gram matrix in an orthonormal basis.

Theorem 3.1 The Gram matrix of a scalar product with respect to an orthonormal
basis is the identity.

Proof: If B = {ē1, . . . , ēn} is an orthonormal basis, then:

(GB)ij = ēi · ēj = δij ⇒ GB = Id.

3.2 Expression of the scalar product in an orthonormal
basis.

If B = {ē1, . . . , ēn} is an orthonormal basis and x̄, ȳ are vectors whose coordinates
relative to this basis are (xi), (yj) then

x̄ · ȳ = (x1 . . . xn )

 y1

...
yn

 or x̄ · ȳ = (x)t(y)
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Therefore the norm of a vector can be obtained as follows:

‖x̄‖ =
√

(x1)2 + . . .+ (xn)2

3.3 Covariant coordinates with respect to an orthonor-
mal basis.

Theorem 3.2 The covariant coordinates of any vector with respect to an orthonor-
mal basis are the same as the contravariant ones.

Proof: Just take into account that the Gram matrix with respect to the orthonormal
basis is the identity.

3.4 Relation between orthonormal bases.

Let B and B′ be two orthonormal bases of U :

B = {ē1, . . . , ēn}; B′ = {ē′1, . . . , ē′n}.

We know that:

GB′ = (MBB′)
tGBMBB′

In addition, since GB = GB′ = Id are orthonormal bases, we therefore deduce that:

Theorem 3.3 The change-of-basis matrix between two orthonormal bases B,B′ is
orthogonal, that is:

(MBB′)
tMBB′ = Id.

It is interesting to note that the fact that a matrix is orthogonal means that
its inverse coincides with its transpose. This makes the change of basis between
orthonormal bases especially convenient.

4 Orthogonal projection.

4.1 Orthogonal subspaces.

Definition 4.1 Two subspaces S1 and S2 of a Euclidean vector space U are said to
be orthogonal when every element of S1 is orthogonal to all elements of S2

x̄ · ȳ = 0 for any x̄ ∈ S1, ȳ ∈ S2.

Proposition 4.2 If S1 and S2 are two subspaces generated respectively by the vectors
{ū1, . . . , ūp} and {v̄1, . . . , v̄q}, then a necessary and sufficient condition for S1 and
S2 to be orthogonal is:

ūi · v̄j = 0 for all i ∈ {1, . . . , p}, j ∈ {1, . . . , q}.

Proof: The necessity of the condition is clear. Let us see the sufficiency. Fix x̄ ∈ S1,
ȳ ∈ S2. We need to see that if the condition of the statement is fulfilled, then x̄ and
ȳ are orthogonal.

These vectors can be written as:

x̄ = α1ū1 + . . .+ αpūp; ȳ = β1v̄1 + . . .+ βq v̄q.

By the properties of the scalar product:

x̄ · ȳ =

p∑
i=1

q∑
j=1

αiβj ūi · v̄j .

By hypothesis ūi · v̄j = 0, hence x̄ · ȳ = 0.

4.2 Supplementary orthogonal subspace.

Definition 4.3 Given a Euclidean vector space U and a subset V ⊂ U , the set

V ⊥ = {x̄ ∈ U | x̄ · v̄ = 0, for all v̄ ∈ V }.

is called the subspace orthogonal to V .

We note that this definition is equivalent to that of the conjugate space of U ,
which we have seen in the chapter on quadratic forms. Therefore, we immediately
obtain the following properties:

1. V ⊥ is a vector subspace.

2. V ⊂W ⇒ W⊥ ⊂ V ⊥.

3. If V = L{v̄1, . . . , v̄p} then V ⊥ = {v̄1, . . . , v̄p}⊥.

4. If V is a vector subspace, V and V ⊥ are complementary subspaces.

Proof: First we obtain that V ∩ V ⊥ = {0}:

x̄ ∈ V ∩ V ⊥ ⇒ x̄ · x̄ = 0 ⇒ x̄ = 0̄.

Now let us see that V + V ⊥ = U . Let {v̄1, . . . , v̄p} be an orthogonal basis of
V . By the incomplete orthogonal basis theorem, we can complete it up to an
orthogonal basis of the whole space U :

{v̄1, . . . , v̄p, v̄p+1, . . . , v̄n}
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Since v̄i · v̄j = 0 for i ∈ {1, . . . , p}, j ∈ {p+ 1, . . . , n} we deduce

v̄j ∈ V ⊥, for j ∈ {p+ 1, . . . , n}

and therefore

L{v̄p+1, . . . , v̄n} ⊂ V ⊥ ⇒ dim(V ⊥) ≥ n− p

So:

n ≥ dim(V + V ⊥) = dim(V ) + dim(V ⊥)− dim(V ∩ V ⊥) ≥ p+ n− p = n

and therefore

dim(V + V ⊥) = n ⇒ V + V ⊥ = U.

4.3 Orthogonal projection

Definition 4.4 Given a subspace V of a Euclidean space U we define the orthog-
onal projection onto V as the mapping

pV : U −→ U
x̄ −→ x̄1

where x̄ = x̄1 + x̄2 with x̄1 ∈ V, x̄2 ∈ V ⊥.

The above definition makes sense because as we have seen, V and V ⊥ are comple-
mentary vector subspaces.

5 Symmetric endomorphisms.

5.1 Definition.

Definition 5.1 Let U be an Euclidean space. An endomorphism f : U −→ U is
said to be symmetric if:

x̄ · f(ȳ) = ȳ · f(x̄) ∀x̄, ȳ ∈ U.

If B = {ē1, . . . , ēn} is a basis of U , GB is the Gram matrix with respect to B and
FB is the matrix of an endomorphism with respect to the same basis B, then the
symmetry condition reads as follows:

x̄ · f(ȳ) = ȳ · f(x̄) ⇐⇒ x̄ · f(ȳ) = f(x̄) · ȳ ⇐⇒
⇐⇒ (x)tGBFB(y) = (Fb(x))tGB(y) ⇐⇒
⇐⇒ (x)tGBFB(y) = (x)t(FB)tGB(y)

for any x̄, ȳ ∈ U with coordinates (xi), (yi) with respect to the basis B, respectively.

Therefore:

f symmetric endomorphism ⇐⇒ GBFB = F tBGB

In particular if B is an orthonormal basis:

f symmetric endomorphism ⇐⇒ FB
t = FB ⇐⇒ FB is symmetric

(where B is an orthonormal basis )

5.2 Eigenvalues and eigenvectors of a symmetric endo-
morphism.

Proposition 5.2 Let f : U −→ U be a symmetric endomorphism. If λ and µ
are two different eigenvalues of f , then the characteristic subspaces Sλ and Sµ are
orthogonal.

Proof: Let x̄ ∈ Sλ, ȳ ∈ Sµ be nonzero vectors. Since f is symmetric, we have:

x̄ · f(ȳ) = ȳ · f(x̄).

Since x̄, ȳ are eigenvectors associated respectively to λ and µ we obtain

x̄ · (µȳ) = ȳ · (λx̄) ⇒ (λ− µ)x̄ · ȳ = 0.

Taking into account that λ 6= µ we see that x̄ · ȳ = 0 and therefore x̄ and ȳ are
orthogonal.

Theorem 5.3 Any symmetric matrix A ∈ Mn×n(IR) has n real eigenvalues
(counted with multiplicity).

Proof: We know that there are always exactly n complex eigenvalues, corresponding
to the n roots of the characteristic polynomial of A. We have to prove that all of
them are real. Suppose that λ ∈ IC is an eigenvalue and let x̄ = (x1, . . . , xn) ∈ ICn be
an associated nonzero eigenvector. We denote by c(x̄) the conjugate of the vector x̄
whose components are the conjugates of each component of x̄.

Remember that the conjugate of a complex number a + bı is a − bı. We will use
the following properties:

- A complex number is real if and only if it is equal to its conjugate.

- The conjugation ”behaves well” with respect to the sum and product of complex
numbers.

- The product of a nonzero complex number by its conjugate is a positive real
number:

(a+ bı)(a− bı) = a2 + b2 > 0.
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In our case we have:

A(x) = λ(x) ⇒ c(x)tA(x) = λc(x)t(x) (1)

On the other hand, by applying conjugation on both sides of the identity A(x) = λ(x)
and taking into account that since A is real c(A) = A, we deduce

c(A)c(x) = c(λ)c(x) ⇒ Ac(x) = c(λ)c(x) ⇒ (x)tAc(x) = c(λ)(x)tc(x).

Bearing in mind that A is symmetric, if we apply transposition on both sides of this
identity we get:

c(x)tA(x) = c(λ)c(x)t(x).

We compare it with the equation (1) and obtain:

λc(x)t(x) = c(λ)c(x)t(x) ⇒ (λ− c(λ))c(x)t(x) = 0.

But since x̄ 6= 0,
c(x)t(x) = x1c(x1) + . . .+ xnc(xn) > 0.

We deduce that λ − c(λ) = 0, that is, λ is equal to its conjugate and is therefore a
real number.

Theorem 5.4 Every symmetric endomorphism of an n-dimensional Euclidean space
has n real eigenvalues (counted with multiplicity).

Proof: It is enough to take into account that the matrix of a symmetric endo-
morphism relative to any orthonormal basis is symmetric. Now the theorem is a
consequence of the previous result.

5.3 Orthonormal bases of eigenvectors.

Theorem 5.5 Let U be an n-dimensional Euclidean space. If f is a symmetric
endomorphism then there exists an orthonormal basis formed by eigenvectors of f .

Proof: We will prove that there is always an orthogonal basis of eigenvectors. The
remaining step is immediate through the normalization process.

By the previous theorem we know that there are exactly n real eigenvalues (counted
with multiplicity):

λ1

...
λk

 with algebraic multiplicities


m1

...
mk

so m1 + . . .+mk = n. We know that the characteristic spaces give a decomposition
of the space as a direct sum:

V = Sλ1 ⊕ . . .⊕ Sλk .

Additionally, each of them is orthogonal to the other ones. Choosing an orthogonal
basis for each of them, we build an orthogonal basis of eigenvectors for the subspace
V :

{ū1, . . . , ūp}

It only remains to prove that V is actually the entire subspace U . We notice that
any eigenvector of f has to be contained in V .

Suppose that V 6= U . Consider the space V ⊥. Fix x̄ ∈ V ⊥, let us see that
f(x̄) ∈ V ⊥. To do this, we must check that f(x̄) · ūi = 0 for any i = 1, . . . , p:

f(x̄) · ūi = x̄ · f(ūi) = x̄ · λūi = 0.
↑ ↑ ↑

f symmetric ūi eigenvector x̄ ∈ V ⊥

Therefore the subspace V ⊥ is invariant by f . The restriction of f to V ⊥

g : V ⊥ −→ V ⊥; g(x̄) = f(x̄)

is again a symmetric endomorphism. All its eigenvalues are real, and therefore it
contains at least one nonzero eigenvector. But this contradicts the fact that all
eigenvectors are in V and V ∩ V ⊥ = {0}.

Corollary 5.6 If f is a symmetric endomorphism of a Euclidean space, there exists
an orthonormal basis with respect to which the associated matrix is diagonal.

Proof: It is enough to apply the previous theorem. Because f is symmetric, there
always exists an orthonormal basis formed by eigenvectors; but the matrix of any
endomorphism with respect to a basis of eigenvectors is diagonal.

Corollary 5.7 If A ∈Mn×n(IR) is a symmetric matrix:

1. All eigenvalues of A are real.

2. A is diagonalizable by similarity.

3. There exists an orthonormal basis of IRn with respect to the usual scalar
product which is formed by eigenvectors of A .

4. There exists an orthogonal matrix P (that is, satisfying P t = P−1) such
that:

D = P−1AP

where D is the diagonal matrix formed by the eigenvalues.
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