Part II

Euclidean vector spaces.

1. Introduction to Euclidean spaces.

1 Scalar product.

1.1 Definition.

Definition 1.1 Let U be a real vector space. A bilinear symmetric and positive definite form is called a scalar product or dot product.

If $f: U \times U \longrightarrow \mathbb{R}$ is a bilinear form corresponding to a scalar product, the image by f of a pair of vectors (\bar{x}, \bar{y}) will normally be denoted as

 $f(\bar{x},\bar{y})=\bar{x}\cdot\bar{y}.$

With this notation, the properties that must be fulfilled for f to effectively define a scalar product can be written as follows:

1. **Bilinearity:** For any $\bar{x}, \bar{y}, \bar{z} \in U, \alpha, \beta \in \mathbb{R}$, the following must hold:

$$(\alpha \bar{x} + \beta \bar{y}) \cdot \bar{z} = \alpha \bar{x} \cdot \bar{z} + \beta \bar{y} \cdot \bar{z}.$$
$$\bar{x} \cdot (\alpha \bar{y} + \beta \bar{z}) = \alpha \bar{x} \cdot \bar{y} + \beta \bar{x} \cdot \bar{z}.$$

2. Symmetry: For any $\bar{x}, \bar{y} \in U$, we must have

$$\bar{x} \cdot \bar{y} = \bar{y} \cdot \bar{x}.$$

3. Positive definiteness: For any $\bar{x} \in U$ different from $\bar{0}$

 $\bar{x} \cdot \bar{x} > 0.$

Definition 1.2 An Euclidean vector space (or just Euclidean space) is a real vector space on which we have defined a scalar product.

1.2 Gram matrix of a scalar product.

Definition 1.3 Let U be an Euclidean vector space. Let $B = {\bar{u}_1, ..., \bar{u}_n}$ be a basis of U. The matrix G_B associated to the bilinear form f with respect to the basis B is called the **Gram matrix** of the scalar product with respect to this basis.

With the notation we have adopted for the scalar product, the Gram matrix with respect to the basis B is of the form:

$$G_B = \begin{pmatrix} \bar{u}_1 \cdot \bar{u}_1 & \bar{u}_1 \cdot \bar{u}_2 & \dots & \bar{u}_1 \cdot \bar{u}_n \\ \bar{u}_2 \cdot \bar{u}_1 & \bar{u}_2 \cdot \bar{u}_2 & \dots & \bar{u}_2 \cdot \bar{u}_n \\ \vdots & \vdots & \ddots & \vdots \\ \bar{u}_n \cdot \bar{u}_1 & \bar{u}_n \cdot \bar{u}_2 & \dots & \bar{u}_n \cdot \bar{u}_n \end{pmatrix}.$$

The matrix expression of the scalar product with respect to this basis is:

$$\bar{x} \cdot \bar{y} = (x)^t G(y)$$

where $(x^i), (y^i)$ are the coordinates of the vectors \bar{x}, \bar{y} with respect to the basis B.

Taking into account that a scalar product corresponds to a symmetric and positive definite bilinear form, the Gram matrix fulfills the following properties:

- 1. G_B is symmetric.
- 2. G_B is positive definite.
- 3. G_B is congruent with the identity. That is, there always exists a basis with respect to which the Gram matrix of the scalar product is the identity.

Proof: Recall that as we have seen, every symmetric and positive definite matrix is congruent to the identity.

4. If B and B' are two bases of the vector space U, then:

$$G'_B = (M_{BB'})^t G_B M_{BB'}$$

5. The Gram matrix is a fully covariant, second-order homogeneous tensor. **Proof:** Just take into account the way it behaves under a change of basis.

2 Norm of a vector.

Definition 2.1 Let U be a Euclidean vector space. The norm or modulus of a vector \bar{x} is defined as

$$\|\bar{x}\| = +\sqrt{\bar{x}\cdot\bar{x}}.$$

Since the scalar product is a positive definite symmetric bilinear form, $\bar{x} \cdot \bar{x}$ is always nonnegative, so this square root is a real number.

Let's see some fundamental properties of the norm:

1.
$$\|\bar{x}\| = 0 \iff \bar{x} = \bar{0}.$$

Proof:
 $\|\bar{x}\| = 0 \iff \bar{x} \cdot \bar{x} =$

since the scalar product is positive definite

 $\iff \bar{x} = \bar{0}$

2. $\|\bar{x}\| > 0$ for any $\bar{x} \neq \bar{0}$.

3. $\|\lambda \bar{x}\| = |\lambda| \|\bar{x}\|$, for any $\lambda \in \mathbb{R}$, $\bar{x} \in U$. **Proof:**

$$|\lambda \bar{x}\| = +\sqrt{(\lambda \bar{x}) \cdot (\lambda \bar{x})} = +\sqrt{\lambda^2 \bar{x} \cdot \bar{x}} = +|\lambda|\sqrt{\bar{x} \cdot \bar{x}} = |\lambda| \|\bar{x}\|$$

4. Schwarz Inequality:

$$\bar{x}\|\|\bar{y}\| \ge |\bar{x} \cdot \bar{y}|$$

for any $\bar{x}, \bar{y} \in U$.

Proof I: We distinguish two possibilities:

- If \bar{x}, \bar{y} are dependent, either $\bar{x} = \bar{0}$ (and the result is immediate), or $\bar{y} = \lambda \bar{x}$, for some $\lambda \in \mathbb{R}$. Then:

 $\|\bar{x}\|\|\bar{y}\| = \|\bar{x}\|\|\lambda\bar{x}\| = |\lambda|\|\bar{x}\|^2$

and

$$|\bar{x} \cdot \bar{y}| = |\bar{x} \cdot (\lambda \bar{x})| = |\lambda| |\bar{x} \cdot \bar{x}| = |\lambda| ||\bar{x}||^2$$

- If they are independent, we can consider the restriction of the scalar product to the subspace $V = \mathcal{L}\{\bar{x}, \bar{y}\}$ generated by both. The restriction of the scalar product to V is still a positive definite bilinear form. The matrix of this bilinear form with respect to the basis $\{\bar{x}, \bar{y}\}$ is:

$$G' = \begin{pmatrix} \bar{x} \cdot \bar{x} & \bar{x} \cdot \bar{y} \\ \bar{y} \cdot \bar{x} & \bar{y} \cdot \bar{y} \end{pmatrix} = \begin{pmatrix} \|\bar{x}\|^2 & \bar{x} \cdot \bar{y} \\ \bar{x} \cdot \bar{y} & \|\bar{y}\|^2 \end{pmatrix}$$

Since it is positive definite, its determinant is a positive number:

$$|G'| > 0 \quad \Rightarrow \quad \|\bar{x}\|^2 \|\bar{y}\|^2 > (\bar{x} \cdot \bar{y})^2 \quad \Rightarrow \quad \|\bar{x}\| \|\bar{y}\| > |\bar{x} \cdot \bar{y}|$$

Proof II: We consider the vector $\bar{x} + \lambda \bar{y}$ for any $\lambda \in \mathbb{R}$. Since the scalar product is definite positive we have

$$\begin{aligned} (\bar{x} + \lambda \bar{y}) \cdot (\bar{x} + \lambda \bar{y}) > 0 & \Rightarrow & \bar{x} \cdot \bar{x} + \lambda \bar{x} \cdot \bar{y} + \lambda \bar{y} \cdot \bar{x} + \lambda^2 \bar{y} \cdot \bar{y} \ge 0 & \Rightarrow \\ & \Rightarrow & \|\bar{y}\|^2 \lambda^2 + 2(\bar{x} \cdot \bar{y})\lambda + \|\bar{x}\|^2 \ge 0. \end{aligned}$$

That is, we obtain a quadratic equation in λ that never takes negative values. Therefore it can have at most one real (double) solution and the discriminant of that equation cannot be positive:

$$(2(\bar{x}\cdot\bar{y}))^2 - 4\|\bar{y}\|^2 \|\bar{x}\|^2 \le 0 \quad \Rightarrow \quad \|\bar{x}\|\|\bar{y}\| \ge |\bar{x}\cdot\bar{y}|.$$

5. Minkowski inequality:

$$\|\bar{x} + \bar{y}\| \le \|\bar{x}\| + \|\bar{y}\|$$

for any $\bar{x}, \bar{y} \in U$.

Proof: We have:

$$\begin{aligned} \|\bar{x} + \bar{y}\|^2 &= (\bar{x} + \bar{y}) \cdot (\bar{x} + \bar{y}) = \bar{x} \cdot \bar{x} + \bar{x} \cdot \bar{y} + \bar{y} \cdot \bar{x} + \bar{y} \cdot \bar{y} = \\ &= \|\bar{x}\|^2 + \|\bar{y}\|^2 + 2\bar{x} \cdot \bar{y} \le \|\bar{x}\|^2 + \|\bar{y}\|^2 + 2|\bar{x} \cdot \bar{y}| \end{aligned}$$

and applying Schwarz inequality

$$\|\bar{x} + \bar{y}\|^2 \le \|\bar{x}\|^2 + \|\bar{y}\|^2 + 2\|\bar{x}\|\|\bar{y}\| \le (\|\bar{x}\| + \|\bar{y}\|)^2$$

Definition 2.2 In an Euclidean space U, a vector of norm 1 is called a unit vector or unitary vector.

3 Angle between two vectors.

Definition 3.1 Let U be a Euclidean space. Given two non-zero vectors $\bar{x}, \bar{y} \in U$ we define the **angle** formed by them as the real number $(\bar{x}, \bar{y}) \in [0, \pi]$ satisfying:

$$\cos(\bar{x},\bar{y}) = \frac{\bar{x} \cdot \bar{y}}{\|\bar{x}\| \|\bar{y}\|}.$$

By the Schwarz inequality:

$$-1 \le \frac{\bar{x} \cdot \bar{y}}{\|\bar{x}\| \|\bar{y}\|} \le 1.$$

Therefore, there is only one angle in the interval $[0, \pi]$ whose cosine is the previous one.

This definition of angle implies the following indentity:

$$\bar{x} \cdot \bar{y} = \|\bar{x}\| \, \|\bar{y}\| \cos(\bar{x}, \bar{y})$$