Part II

Euclidean vector spaces.

1. Introduction to Euclidean spaces.

1 Scalar product.

1.1 Definition.

Definition 1.1 Let U be a real vector space. A bilinear symmetric and positive definite form is called a scalar product or dot product.

If $f: U \times U \longrightarrow \mathbb{R}$ is a bilinear form corresponding to a scalar product, the image by f of a pair of vectors (\bar{x}, \bar{y}) will normally be denoted as

$$
f(\bar{x}, \bar{y})=\bar{x} \cdot \bar{y}
$$

With this notation, the properties that must be fulfilled for f to effectively define a scalar product can be written as follows

1. Bilinearity: For any $\bar{x}, \bar{y}, \bar{z} \in U, \alpha, \beta \in \mathbb{R}$, the following must hold:

$$
\begin{aligned}
& (\alpha \bar{x}+\beta \bar{y}) \cdot \bar{z}=\alpha \bar{x} \cdot \bar{z}+\beta \bar{y} \cdot \bar{z} \\
& \bar{x} \cdot(\alpha \bar{y}+\beta \bar{z})=\alpha \bar{x} \cdot \bar{y}+\beta \bar{x} \cdot \bar{z}
\end{aligned}
$$

2. Symmetry: For any $\bar{x}, \bar{y} \in U$, we must have

$$
\bar{x} \cdot \bar{y}=\bar{y} \cdot \bar{x} .
$$

3. Positive definiteness: For any $\bar{x} \in U$ different from $\overline{0}$

$$
\bar{x} \cdot \bar{x}>0
$$

Definition 1.2 An Euclidean vector space (or just Euclidean space) is a real vector space on which we have defined a scalar product.

1.2 Gram matrix of a scalar product.

Definition 1.3 Let U be an Euclidean vector space. Let $B=\left\{\bar{u}_{1}, \ldots, \bar{u}_{n}\right\}$ be a basis of U. The matrix G_{B} associated to the bilinear form f with respect to the basis B is called the Gram matrix of the scalar product with respect to this basis.

With the notation we have adopted for the scalar product, the Gram matrix with respect to the basis B is of the form:

$$
G_{B}=\left(\begin{array}{cccc}
\bar{u}_{1} \cdot \bar{u}_{1} & \bar{u}_{1} \cdot \bar{u}_{2} & \ldots & \bar{u}_{1} \cdot \bar{u}_{n} \\
\bar{u}_{2} \cdot \bar{u}_{1} & \bar{u}_{2} \cdot \bar{u}_{2} & \ldots & \bar{u}_{2} \cdot \bar{u}_{n} \\
\vdots & \vdots & \ddots & \vdots \\
\bar{u}_{n} \cdot \bar{u}_{1} & \bar{u}_{n} \cdot \bar{u}_{2} & \ldots & \bar{u}_{n} \cdot \bar{u}_{n}
\end{array}\right) .
$$

The matrix expression of the scalar product with respect to this basis is:

$$
\bar{x} \cdot \bar{y}=(x)^{t} G(y)
$$

where $\left(x^{i}\right),\left(y^{i}\right)$ are the coordinates of the vectors \bar{x}, \bar{y} with respect to the basis B.
Taking into account that a scalar product corresponds to a symmetric and positive definite bilinear form, the Gram matrix fulfills the following properties:

1. G_{B} is symmetric.
2. G_{B} is positive definite.
3. G_{B} is congruent with the identity. That is, there always exists a basis with respect to which the Gram matrix of the scalar product is the identity.
Proof: Recall that as we have seen, every symmetric and positive definite matrix is congruent to the identity.
4. If B and B^{\prime} are two bases of the vector space U, then:

$$
G_{B}^{\prime}=\left(M_{B B^{\prime}}\right)^{t} G_{B} M_{B B^{\prime}}
$$

5. The Gram matrix is a fully covariant, second-order homogeneous tensor.

Proof: Just take into account the way it behaves under a change of basis.

2 Norm of a vector.

Definition 2.1 Let U be a Euclidean vector space. The norm or modulus of a vector \bar{x} is defined as

$$
\|\bar{x}\|=+\sqrt{\bar{x} \cdot \bar{x}}
$$

Since the scalar product is a positive definite symmetric bilinear form, $\bar{x} \cdot \bar{x}$ is always nonnegative, so this square root is a real number.

Let's see some fundamental properties of the norm:

1. $\|\bar{x}\|=0 \Longleftrightarrow \bar{x}=\overline{0}$.

Proof:

$$
\|\bar{x}\|=0 \Longleftrightarrow \bar{x} \cdot \bar{x}=0 \quad \underset{\uparrow}{\Longleftrightarrow} \quad \bar{x}=\overline{0}
$$

since the scalar product is positive definite
2. $\|\bar{x}\|>0$ for any $\bar{x} \neq \overline{0}$.
3. $\|\lambda \bar{x}\|=|\lambda|\|\bar{x}\|$, for any $\lambda \in \mathbb{R}, \bar{x} \in U$. Proof:

$$
\|\lambda \bar{x}\|=+\sqrt{(\lambda \bar{x}) \cdot(\lambda \bar{x})}=+\sqrt{\lambda^{2} \bar{x} \cdot \bar{x}}=+|\lambda| \sqrt{\bar{x} \cdot \bar{x}}=|\lambda|\|\bar{x}\|
$$

4. Schwarz Inequality:

$$
\|\bar{x}\|\|\bar{y}\| \geq|\bar{x} \cdot \bar{y}|
$$

for any $\bar{x}, \bar{y} \in U$.
Proof I: We distinguish two possibilities:

- If \bar{x}, \bar{y} are dependent, either $\bar{x}=\overline{0}$ (and the result is immediate), or $\bar{y}=\lambda \bar{x}$, for some $\lambda \in \mathbb{R}$. Then:

$$
\|\bar{x}\|\|\bar{y}\|=\|\bar{x}\|\|\lambda \bar{x}\|=|\lambda|\|\bar{x}\|^{2}
$$

and

$$
|\bar{x} \cdot \bar{y}|=|\bar{x} \cdot(\lambda \bar{x})|=|\lambda||\bar{x} \cdot \bar{x}|=|\lambda|\|\bar{x}\|^{2} .
$$

- If they are independent, we can consider the restriction of the scalar product to the subspace $V=\mathcal{L}\{\bar{x}, \bar{y}\}$ generated by both. The restriction of the scalar product to V is still a positive definite bilinear form. The matrix of this bilinear form with respect to the basis $\{\bar{x}, \bar{y}\}$ is:

$$
G^{\prime}=\left(\begin{array}{cc}
\bar{x} \cdot \bar{x} & \bar{x} \cdot \bar{y} \\
\bar{y} \cdot \bar{x} & \bar{y} \cdot \bar{y}
\end{array}\right)=\left(\begin{array}{cc}
\|\bar{x}\|^{2} & \bar{x} \cdot \bar{y} \\
\bar{x} \cdot \bar{y} & \|\bar{y}\|^{2}
\end{array}\right)
$$

Since it is positive definite, its determinant is a positive number:

$$
\left|G^{\prime}\right|>0 \Rightarrow\|\bar{x}\|^{2}\|\bar{y}\|^{2}>(\bar{x} \cdot \bar{y})^{2} \Rightarrow\|\bar{x}\|\|\bar{y}\|>|\bar{x} \cdot \bar{y}| .
$$

Proof II: We consider the vector $\bar{x}+\lambda \bar{y}$ for any $\lambda \in \mathbb{R}$. Since the scalar product is definite positive we have

$$
\begin{aligned}
(\bar{x}+\lambda \bar{y}) \cdot(\bar{x}+\lambda \bar{y})>0 & \Rightarrow \bar{x} \cdot \bar{x}+\lambda \bar{x} \cdot \bar{y}+\lambda \bar{y} \cdot \bar{x}+\lambda^{2} \bar{y} \cdot \bar{y} \geq 0 \quad \Rightarrow \\
& \Rightarrow\|\bar{y}\|^{2} \lambda^{2}+2(\bar{x} \cdot \bar{y}) \lambda+\|\bar{x}\|^{2} \geq 0 .
\end{aligned}
$$

That is, we obtain a quadratic equation in λ that never takes negative values. Therefore it can have at most one real (double) solution and the discriminant of that equation cannot be positive:

$$
(2(\bar{x} \cdot \bar{y}))^{2}-4\|\bar{y}\|^{2}\|\bar{x}\|^{2} \leq 0 \quad \Rightarrow \quad\|\bar{x}\|\|\bar{y}\| \geq|\bar{x} \cdot \bar{y}| .
$$

5. Minkowski inequality:

$$
\|\bar{x}+\bar{y}\| \leq\|\bar{x}\|+\|\bar{y}\|
$$

for any $\bar{x}, \bar{y} \in U$.
Proof: We have:

$$
\begin{aligned}
\|\bar{x}+\bar{y}\|^{2} & =(\bar{x}+\bar{y}) \cdot(\bar{x}+\bar{y})=\bar{x} \cdot \bar{x}+\bar{x} \cdot \bar{y}+\bar{y} \cdot \bar{x}+\bar{y} \cdot \bar{y}= \\
& =\|\bar{x}\|^{2}+\|\bar{y}\|^{2}+2 \bar{x} \cdot \bar{y} \leq\|\bar{x}\|^{2}+\|\bar{y}\|^{2}+2|\bar{x} \cdot \bar{y}|
\end{aligned}
$$

and applying Schwarz inequality

$$
\|\bar{x}+\bar{y}\|^{2} \leq\|\bar{x}\|^{2}+\|\bar{y}\|^{2}+2\|\bar{x}\|\|\bar{y}\| \leq(\|\bar{x}\|+\|\bar{y}\|)^{2} .
$$

Definition 2.2 In an Euclidean space U, a vector of norm 1 is called a unit vector or unitary vector.

3 Angle between two vectors.

Definition 3.1 Let U be a Euclidean space. Given two non-zero vectors $\bar{x}, \bar{y} \in U$ we define the angle formed by them as the real number $(\bar{x}, \bar{y}) \in[0, \pi]$ satisfying:

$$
\cos (\bar{x}, \bar{y})=\frac{\bar{x} \cdot \bar{y}}{\|\bar{x}\|\|\bar{y}\|} .
$$

By the Schwarz inequality:

$$
-1 \leq \frac{\bar{x} \cdot \bar{y}}{\|\bar{x}\|\|\bar{y}\|} \leq 1
$$

Therefore, there is only one angle in the interval $[0, \pi]$ whose cosine is the previous one.

This definition of angle implies the following indentity:

$$
\bar{x} \cdot \bar{y}=\|\bar{x}\|\|\bar{y}\| \cos (\bar{x}, \bar{y})
$$

