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Part I

Bilinear mappings and
homogeneous tensors.

1. Bilinear mappings and quadratic
forms.

1 Bilinear mappings.

Definition 1.1 Given three vector spaces U, V,W over the field IK, we say that the
mapping

f : U × V −→W

is bilinear if it is linear on each one of its arguments, i. e.

f(αū1 + βū2, v̄1) = αf(ū1, v̄1) + βf(ū2, v̄1)
f(ū1, αv̄1 + βv̄2) = αf(ū1, v̄1) + βf(ū1, v̄2)

for any α, β ∈ IK, ū1, ū2 ∈ U , v̄1, v̄2 ∈ V .

Definition 1.2 A bilinear form is a bilinear mapping whose final vector space is
the field IK:

f : U × V −→ IK, bilinear.

1.1 The matrix of a bilinear form.

Assume that U, V are vector spaces, B1 is a basis of U and B2 a basis of V .

B1 = {ū1, . . . , ūm}, B2 = {v̄1, . . . , v̄n}.

Let f : U ×V −→ IK be a bilinear form. Fix vectors x̄ ∈ U , ȳ ∈ V with the following
expression in coordinates relative to the bases B1, B2 :

x̄ = xiūi; ȳ = yj v̄j .

Since f is bilinear we have

f(x̄, ȳ) = f(xiūi, y
j v̄j) = xiyjf(ūi, v̄j)

The matrix associated to f relative to the bases B1 and B2 is defined as

FB1B2 =


f(ū1, v̄1) f(ū1, v̄2) . . . f(ū1, v̄n)
f(ū2, v̄1) f(ū2, v̄2) . . . f(ū2, v̄n)

...
...

. . .
...

f(ūm, v̄1) f(ūm, v̄2) . . . f(ūm, v̄n)

 ,

Hence we can write

f(x̄, ȳ) = (x1 x2 . . . xm )


f(ū1, v̄1) f(ū1, v̄2) . . . f(ū1, v̄n)
f(ū2, v̄1) f(ū2, v̄2) . . . f(ū2, v̄n)

...
...

. . .
...

f(ūm, v̄1) f(ūm, v̄2) . . . f(ūm, v̄n)



y1

yn

...
yn


or just

f(x̄, ȳ) = (x)tFB1B2(y).

1.2 Change of basis of the matrix associated to a bilinear
form.

Let U, V be vector spaces. We fix the bases

B1 = {ū1, . . . , ūm}
B′1 = {ū′1, . . . , ū′m}

Bases of U ;
B2 = {v̄1, . . . , v̄n}
B′2 = {v̄′1, . . . , v̄′n}

Bases of V .

We will denote the coordinates of the vectors x̄ ∈ U , ȳ ∈ V relative to each one of
these bases as follows:

Coordinates of x̄. Coordinates of ȳ.

(x1, . . . , xm) relative to the basis B1

(x′1, . . . , x′m) relative to the basis B′1

(y1, . . . , yn) relative to the basis B2

(y′1, . . . , y′n) relative to the basis B′2

The relations between the different bases and coordinates, in terms of the corre-
sponding change-of-basis matrices are as follows:

(ū′) = (ū)MB1B
′
1

(v̄′) = (v̄)MB2B
′
2

(x) = MB1B
′
1
(x′) (y) = MB2B

′
2
(y′)

Moreover, we know how to express the bilinear mapping f by means of a matrix,
either in terms of the bases B1, B2 or the bases B′1, B

′
2:

f(x̄, ȳ) = (x)tFB1B2(y) f(x̄, ȳ) = (x′)tFB′
1
B′

2
(y′)

Let us see how the matrices associated to f relative to the bases B1, B2 and B′1, B
′
2

are related to each other:

(x)tFB1B2(y) = (MB1B
′
1
(x′))tFB1B2MB2B

′
2
(y′) = (x′)t(MB1B

′
1
)tFB1B2MB2B

′
2
(y′)

We deduce
FB′

1
B′

2
= (MB1B

′
1
)tFB1B2MB2B

′
2
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2 Bilinear forms on a single vector space.

We are especially interested in bilinear forms that are defined on a single vector
space, i. e. bilinear mappings of the form

f : U × U −→ IK.

Let us analyze their main features.

2.1 Matrices and change of basis.

In this case, in order to find the matrix of a bilinear form f : U × U −→ IK it is
enough to fix a single basis

B = {ū1, . . . , ūn}
of U . We will have

f(x̄, ȳ) = (x)tFBB(y), where FBB =


f(ū1, ū1) f(ū1, ū2) . . . f(ū1, ūn)
f(ū2, ū1) f(ū2, ū2) . . . f(ū2, ūn)

...
...

. . .
...

f(ūn, ū1) f(ūn, ū2) . . . f(ūn, ūn)


In this case the matrix FBB can be also denoted by FB or simply by F , if we specify
in advance which basis B we are using.

If we fix another basis of the vector space U :

B′ = {ū′1, . . . , ū′n},

we can write the change of basis as

FB′ = (MBB′)
tFBMBB′

Consequently we deduce:

Two matrices associated to the same bilinear form
on a vector space U are congruent.

2.2 The vector space of all bilinear forms on U .

We denote by Bil(U) the set of all bilinear forms of the form f : U×U → IK. It is easy
to see that Bil(U) is a vector space with the operations of sum and multiplication
by scalars defined as usual.

Let us find its dimension. To this end we will define an isomorphism between
Bil(U) and Mn×n(IK). Once fixed a basis B of U we define

π : Bil(U) −→ Mn×n(IK)
f −→ FBB

This mapping satisfies the following properties:

- It is linear, since if f, g ∈ Bil(U), α, β ∈ IK and x̄, ȳ ∈ U we have

(αf + βg)(x̄, ȳ) = αf(x̄, ȳ) + βg(x̄, ȳ) = α(x)tF (y) + β(x)tG(y) = (x)t(αF + βG)(y)

and hence π(αf + βg) = απ(f) + βπ(g).

- It is injective, since if two bilinear forms are associated to the same matrix, then
they actually coincide as mappings.

- It is onto, since given any n × n matrix A we can always define a bilinear form
whose matrix relative to the basis B is exactly A:

f(x̄, ȳ) = (x)tA(y)

Hence dim(Bil(V )) = dim(Mn×n(IK)) = n2.

2.3 Symmetric and antisymmetric bilinear forms

Definition 2.1 Let f : U × U −→ IK be a bilinear form. We say that

- f is symmetric if f(x̄, ȳ) = f(ȳ, x̄) for any x̄, ȳ ∈ U .

- f is antisymmetric if f(x̄, ȳ) = −f(ȳ, x̄) for any x̄, ȳ ∈ U .

We will denote by BilS(U) the set of all symmetric bilinear forms on U .

We will denote by BilA(U) the set of all antisymmetric bilinear forms on U .

Let us see some properties of these types of bilinear forms:

1. BilS(U) is a vector subspace of Bil(U).

Proof: To begin with, BilS(U) 6= ∅ since the null bilinear form is symmetric.
Moreover, if f, g ∈ BilS(U), α, β ∈ IK and x̄, ȳ ∈ U we have

(αf + βg)(x̄, ȳ) = αf(x̄, ȳ) + βg(x̄, ȳ) = αf(ȳ, x̄) + βg(ȳ, x̄) =
= (αf + βg)(ȳ, x̄)

and hence (αf + βg) ∈ BilS(U).

2. BilS(U) is a vector subspace of Bil(U).

Proof: As above, BilA(U) 6= ∅, since the bilinear form 0 is antisymmetric.
Moreover if f, g ∈ BilA(U), α, β ∈ IK and x̄, ȳ ∈ U we have

(αf + βg)(x̄, ȳ) = αf(x̄, ȳ) + βg(x̄, ȳ) = −αf(ȳ, x̄)− βg(ȳ, x̄) =
= −(αf + βg)(ȳ, x̄)

and hence (αf + βg) ∈ BilA(U).
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3. The subspaces BilS(U) and BilA(U) are complementary in Bil(U).

Proof: We have

- BilS(U)∩BilA(U) = {0} since if a bilinear form f is simultaneously symmetric
and antisymmetric, then it satisfies

f(x̄, ȳ) = f(ȳ, x̄) = −f(x̄, ȳ) ⇒ f(x̄, ȳ) = 0

for any x̄, ȳ ∈ U .

- Any bilinear form f can be decomposed into a sum of a symmetric bilinear
form fS and an antisymmetric one fA, defined as follows:

fS(x̄, ȳ) = 1
2
(f(x̄, ȳ) + f(ȳ, x̄))

fA(x̄, ȳ) = 1
2
(f(x̄, ȳ)− f(ȳ, x̄))

4. If f is a symmetric bilinear form, the matrix F associated to f with respect to
any basis of U is symmetric.

Proof: Fix a basis B = {ū1, . . . , ūn}. For any i, j with 1 ≤ i, j ≤ n we have

fij = f(ūi, ūj) = f(ūj , ūi) = fji.

5. If f is an antisymmetric bilinear form, the matrix F associated to f with respect
to any basis of U is antisymmetric.

Proof: Fix a basis B = {ū1, . . . , ūn}. For any i, j with 1 ≤ i, j ≤ n we have

fij = f(ūi, ūj) = −f(ūj , ūi) = −fji.

3 Quadratic forms.

3.1 Definition.

Definition 3.1 We will give two equivalent definitions:

1. Given any vector space U and any symmetric bilinear form f : U × U −→ IK,
we call the quadratic form associated to f the mapping

ω : U −→ IK
x̄ −→ f(x̄, x̄)

2. Given any vector space U a mapping ω : U −→ IK is a quadratic form if it
satisfies the following conditions:

- ω(λx̄) = λ2ω(x̄), for any λ ∈ IK, x̄ ∈ U .

- the mapping g : U × U −→ K defined as

g(x̄, ȳ) =
1

2
(ω(x̄+ ȳ)− ω(x̄)− ω(ȳ))

is bilinear and symmetric. (This mapping is called the polar form of ω.)

Let us see that these definitions are indeed equivalent:

1) ⇒ 2). If f : U × U −→ IK is a symmetric bilinear form and ω its associated
quadratic form, we have

- ω(λx̄) = f(λx̄, λx̄) = λ2f(x̄, x̄) = λ2ω(x̄).

- If ω(x̄) = f(x̄, x̄) and g is defined as above,

g(x̄, ȳ) = 1
2
(ω(x̄+ ȳ)− ω(x̄)− ω(ȳ)) =

= 1
2
(f(x̄+ ȳ, x̄+ ȳ)− f(x̄, x̄)− f(ȳ, ȳ)) =

= 1
2
(f(x̄, x̄) + f(x̄, ȳ) + f(ȳ, x̄) + f(ȳ, ȳ)− f(x̄, x̄)− f(ȳ, ȳ)) =

= f(x̄, ȳ)

Hence g = f and in particular it is bilinear and symmetric.

2) ⇒ 1) It is enough to check that the mapping g is the symmetric bilinear
form whose associated quadratic form is ω:

g(x̄, x̄) = 1
2
(ω(x̄+ x̄)− ω(x̄)− ω(x̄)) = 1

2
(ω(2x̄)− 2ω(x̄)) =

= 1
2
(4ω(x̄)− 2ω(x̄)) = ω(x̄)

Remark 3.2 We deduce from the definition that to any symmetric bilinear form
on U we can associate a quadratic form and vice versa. Thus the vector space of
all quadratic forms on U is isomorphic with the vector space of symmetric bilinear
forms BilS(U).

3.2 Matrices and change of basis.

Let U be a vector space and B = {ū1, . . . , ūn} a basis. Given any quadratic form
ω : U −→ K we may consider its associated polar form f : U×U −→ IK. The matrix
expression of f is

f(x̄, ȳ) = (x)tFB(y)

Thus, taking into account that ω(x̄) = f(x̄, x̄), the matrix expression of the quadratic
form ω is

ω(x̄) = (x)tFB(x)

Hence the matrix associated to a quadratic form relative to a basis B is just
the matrix associated to the corresponding polar form. Let us note that, since f
is a symmetric bilinear form, the matrix FB associated to a quadratic form is a
symmetric matrix.

If we fix another basis B′ = {ū′1, . . . , ū′n} of U , the relation between the matrices
associated to the quadratic form ω relative to the bases B and B′ is the same as the
relation between the matrices associated to the corresponding polar forms, that is,

FB′ = (MBB′)
tFBMBB′
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As a consequence we deduce that

Any two matrices associated to the same quadratic form
on a vector space U are congruent.

The fact that the rank of a matrix is invariant under congruence allows us to
introduce the following definition:

Definition 3.3 Given any quadratic form ω we define its rank as the rank of any
matrix associated to ω.

3.3 Conjugation.

3.3.1 Conjugate vectors.

Definition 3.4 Let ω : U −→ IK be a quadratic form and let f be its polar form.
Two vectors x̄, ȳ ∈ U are said to be conjugate relative to ω or f if:

f(x̄, ȳ) = 0.

It is clear that the null vector 0̄ is conjugate to all vectors in the space:

f(x̄, 0̄) = 0 for any x̄ ∈ U .

Definition 3.5 Let ω : U −→ IK be a quadratic form and x̄ ∈ U . We say that x̄ is
self-conjugate if it is conjugate to itself

ω(x̄) = 0

3.3.2 Conjugate subspaces.

Definition 3.6 Let ω : U −→ IK be a quadratic form. Let A be a subset of U . We
call the conjugate set of A the set of all vectors which are ω−conjugate to all the
elements of A, and we denote it by conj(A).

conj(A) = {x̄ ∈ U | f(x̄, ā) = 0 for every a ∈ A}.

Let us see some properties of the conjugate set:

1. The set conj(A) is a vector subspace of U .

Proof: It is clear that 0̄ ∈ conj(A), since the null vector is conjugate to any
vector. Moreover, fix any x̄, ȳ ∈ conj(A) and α, β ∈ IK. Then for any a ∈ A we
have

f(αx̄+ βȳ, ā) = αf(x̄, ā) + βf(ȳ, ā) = 0̄
↑

x̄, ȳ ∈ conj(A) ⇒ f(x̄, ā) = f(ȳ, ā) = 0

Hence αx̄+ βȳ ∈ conj(A).

2. A ⊂ B ⇒ conj(B) ⊂ conj(A).

Proof:

x̄ ∈ conj(B) ⇒ f(x̄, b̄) = 0, ∀b̄ ∈ B ⇒
⇒ f(x̄, ā) = 0, ∀ā ∈ A ⊂ B ⇒ x̄ ∈ conj(A).

3. conj(A) = conj(L(A)).

Proof: First we use the preceding property:

A ⊂ L(A) ⇒ conj(L(A)) ⊂ conj(A).

Let us prove the other inclusion. Fix x̄ ∈ conj(A) and ȳ ∈ L(A). Then

ȳ =
∑

αiāi with αi ∈ IK, āi ∈ A.

Hence
f(x̄, ȳ) = f(x̄,

∑
αiāi) =

∑
αif(x̄, āi) = 0

↑
x̄ ∈ conj(A), āi ∈ A ⇒ f(x̄, āi) = 0.

We deduce that x̄ ∈ conj(L(A)).

4. The conjugate of any vector space is the same as the conjugate of any of its
generating sets.

3.3.3 The kernel of a quadratic form.

Definition 3.7 Given any quadratic form ω : U −→ IK we define its kernel as the
set of those vectors conjugate to all vectors in the space:

ker(ω) = {x̄ ∈ U | f(x̄, ȳ) = 0, ∀ȳ ∈ U} = conj(U)

where f is the polar form associated to ω.

Let us see some properties of the kernel:

1. The kernel is a vector subspace.

2. Given any basis B of U :

ker(ω) = {x̄ ∈ U |FB(x) = (0)}.

Proof: It is enough to note that

f(x̄, ȳ) = 0, ∀ȳ ∈ U ⇐⇒ (x)tFB(y) = 0, ∀ȳ ∈ U ⇐⇒ FB(x) = (0).

3. All vectors in the kernel are self-conjugate. The reciprocal is not true.

4. dim(ker(ω)) = dim(U)− rank(ω).

Proof: Recall that the dimension of the subspace of all solutions of a linear
system is the dimension of the space minus the number of equations. If we
apply this to the subspace

ker(ω) = {x̄ ∈ U |FB(x) = (0)}

we obtain the required relation.

4
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3.3.4 Ordinary and degenerate quadratic forms.

Definition 3.8 Let ω : U −→ IK be a quadratic form on a vector space U :

- We say that ω is
ordinary

or
not degenerate

⇐⇒ ker(ω) = {0̄} ⇐⇒ rank(ω) =

dim(U).

- We say that ω is degenerate ⇐⇒ ker(ω) 6= {0̄} ⇐⇒ rank(ω) < dim(U).

3.4 Diagonalization of a quadratic form.

Definition 3.9 A quadratic form ω : U −→ IK is said to be diagonalizable if there
is a basis of U relative to which the matrix associated to ω is diagonal.

Remark 3.10 If the matrix of a quadratic form ω : U −→ IK relative to a basis B
is diagonal, then its matrix expression is

ω(x̄) = (x)D{x} = d11(x1)2 + d22(x2)2 + . . .+ dnn(xn)2

Hence diagonalizing a quadratic form is equivalent to expressing it as a sum of
squares.

Definition 3.11 Given any quadratic form ω : U −→ IK, we call basis of conjugate
vectors relative to ω any basis in which every vector is conjugate to all the remaining
ones.

Proposition 3.12 Let ω : U −→ IK be a quadratic form. The basis B is a basis of
conjugate vectors if and only if the associated matrix FB is diagonal.

Proof: Put B = {ū1, . . . , ūn}. Let us recall that if f is the polar form associated to
ω, then its associated matrix is:

(FB)ij = f(ūi, ūj)

Hence

B basis of conjugate vectors ⇐⇒ f(ūi, ūj) = 0, ∀i 6= j ⇐⇒
⇐⇒ (FB)ij = 0, ∀i 6= j ⇐⇒
⇐⇒ (FB) is diagonal.

We have seen that a matrix associated to a quadratic form is always symmetric.
Moreover, the change of basis transforms an associated matrix into another which

is congruent to it. Thus if FB is the matrix associated to w relative to an arbitrary
basis B,

ω diagonalizable ⇐⇒ FB diagonalizable by congruence

Taking into account that every symmetric matrix is diagonalizable by congruence
we deduce the following theorem:

Theorem 3.13 Every quadratic form is diagonalizable. Equivalently, given any
quadratic form there always exists a basis of conjugate vectors.

4 Real quadratic forms.

4.1 Canonical expression of a quadratic form.

Let ω : U −→ IR be a quadratic form. We have just proved that ω is diagonalizable.
In particular there exists a basis B relative to which the associated matrix has the
form:

FB =

 Ip Ω Ω

Ω −Iq Ω

Ω Ω Ω

 . (∗)

Definition 4.1 We call the signature of the quadratic form ω the pair or nat-
ural numbers (p, q) where p is the number of positive elements in its diagonal form
and q the number of negative elements:

Sig(ω) = (p, q).

These two numbers satisfy p+ q = rank(ω).

In the following theorem, called Sylvester’s law of inertia it is proved that the
preceding definition makes sense i. e. the numbers (p, q) do not depend on the basis
relative to which it is diagonalized.

Theorem 4.2 (Sylvester’s law of inertia) The signature of any quadratic form
ω : U −→ IR is invariant, that is, it does not depend on the basis.

Proof: Fix two basis of U

B = {ū1, . . . , ūn}, B′ = {ū′1, . . . , u′n},

relative to which the matrix associated to ω is diagonal (and has the form (*)).

Assume that the signatures relative to the bases B and B′ are (p, q) and (p′, q′)
respectively. Put

U1 = L{ū1, . . . , ūp}
U2 = L{ū′p′+1, . . . , ū

′
n}

5
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If x̄ ∈ U1 ∩ U2 is a nonzero vector

x̄ ∈ U1 ⇒ ω(x̄) > 0
x̄ ∈ U2 ⇒ ω(x̄) ≤ 0

hence U1 ∩ U2 = {0̄}. Consequently

dim(U1)+dim(U2) = dim(U1+U2)+dim(U1∩U2) ⇒ p+(n−p′) ≤ n ⇒ p ≤ p′

If we repeat the argument with the roles of p and p′ reversed we obtain p′ ≤ p. Hence

p = p′ ⇒ q = n− p = n− p′ = q′.

4.2 Classification of quadratic forms.

Definition 4.3 Let ω : U −→ IR be a quadratic form:

- ω is positive definite ⇐⇒ ω(x̄) > 0, ∀x̄ 6= 0̄.

- ω is positive semidefinite ⇐⇒ It is not positive definite and
ω(x̄) ≥ 0, ∀x̄ 6= 0̄.

- ω is negative definite ⇐⇒ ω(x̄) < 0, ∀x̄ 6= 0̄.

- ω es negative semidefinite ⇐⇒ It is not negative definite and
ω(x̄) ≤ 0, ∀x̄ 6= 0̄.

- ω is indefinite ⇐⇒ ∃x̄, ȳ 6= 0 with ω(x̄) > 0, ω(ȳ) < 0.

All these definitions can be given for real symmetric matrices, if we take into
account that every such matrix determines a quadratic form:

Definition 4.4 Let A ∈Mn×n(IR) be a real symmetric matrix:

- A is positive definite ⇐⇒ A is congruent with I.

- A es positive semidefinite ⇐⇒ A is congruent with

(
I Ω

Ω Ω

)
.

- A es negative definite ⇐⇒ A is congruent with −I.

- A is negative semidefinite ⇐⇒ A is congruent with

(
−I Ω

Ω Ω

)
.

- A es indefinite ⇐⇒ A is congruent with

 I Ω Ω

Ω −I Ω

Ω Ω Ω

.

Proposition 4.5 Let ω : U −→ IR be a quadratic form on an n-dimensional vector
space U .

- ω is positive definite ⇐⇒ Sig(ω) = (n, 0).

- ω es positive semidefinite ⇐⇒ Sig(ω) = (p, 0) with p < n.

- ω is negative definite ⇐⇒ Sig(ω) = (0, n).

- ω is negative semidefinite ⇐⇒ Sig(ω) = (0, q) with q < n.

- ω es indefinite ⇐⇒ Sig(ω) = (p, q) with p > 0, q > 0.

Proof: This is easy to check if we take into account that if Sig(ω) = (p, q) then the
expression of ω relative to a convenient basis is:

ω(x̄) = (x1)2 + (x2)2 + . . .+ (xp)2 − (xp+1)2 − (xp+2)2 − . . .− (xp+q)2.

Corollary 4.6 (Description of the set of self-conjugate vectors.) Let ω :
U −→ IR be a quadratic form on an n-dimensional vector space U . Let Self(ω)
be the set of all self-conjugate vectors. Then

1. If ω is positive definite or negative definite then Self(ω) = {~0}.
2. If ω is positive semidefinite or negative semidefinite then Self(ω) = ker(ω).

3. If ω is indefinite, then

6
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(a) If rank(ω) = 2 then Self(ω) is the union of two hiperplanes whose inter-
section is ker(w).

(b) If rank(ω) > 2 then Self(ω) is a quadric whose equation cannot be ex-
pressed as the product of the equations of two hyperplanes.

Proof: Let us recall that

Self(ω) = {~u ∈ U |ω(~u) = 0}.

If the quadratic form is positive (or negative) definite then ω(~u) 6= 0 whenever ~u 6= ~0.
Hence Self(ω) = {~0}.

If the quadratic form is positive semidefinite then we know that the associated
matrix FB relative to a convenient basis is B is diagonal with k = n− rank(w) ones
and rank(w) zeros on the diagonal. In coordinates relative to such a basis

w((x1, x2, . . . , xn)B) = x21 + x22 + . . .+ x2k

being n− k = rank(w).

Hence

(x1, x2, . . . , xn)B ∈ Self(ω) ⇐⇒ x21+x22+. . .+x2k = 0 ⇐⇒ x1 = x2 = . . . = xk = 0.

On the other hand a vector (x1, x2, . . . , xn)B is in the kernel if it satisfies

(x1, x2, . . . , xn)BFB = (0, 0, . . . , 0) ⇐⇒ x1 = x2 = . . . = xk = 0

We see that indeed Self(ω) = ker(ω). In an analogous way one can analyze the
case where the quadratic form is negative semidefinite.

Finally if it is indefinite, once diagonalized there will be both positive and negative
terms on the diagonal:

- If rank(ω) = 2 then in coordinates relative to a convenient basis B,

w((x1, x2, . . . , xn)B) = x21 − x22 = (x1 − x2)(x1 + x2).

Thus
w((x1, x2, . . . , xn)B) = 0 ⇐⇒ x1 − x2 = 0 or x1 + x2 = 0

and we see that indeed, the set of self-conjugate vectors is the union of two hyper-
planes, one given by the equation x1 − x2 = 0 and the other given by the equation
x1 + x2 = 0. Furthermore the kernel is the set of vectors satisfying the equations
x1 = x2 = 0, which is exactly the intersection of the two hyperplanes.

- If rank(ω) > 2 then in coordinates relative to a convenient basis B,

w((x1, x2, . . . , xn)B) = x21 + . . .+ x2p − x2p+1 − . . .− x2p+q
with p, q > 1 and p+q > 2 and there is no way to decompose or simplify the equation

x21 + . . .+ x2p + x2p+1 − . . .− x2p+q = 0.

Proposition 4.7 The determinants of any two congruent matrices always have the
same sign.

Proof: If A and B are congruent there exists a regular matrix C with

A = CBCt ⇒ |A| = |C||B||Ct| = |C|2|B| ⇒ sign(|A|) = sign(|B|).

Theorem 4.8 (Sylvester’s criterion) Let ω : U −→ IR be a quadratic form and
let F be its associated matrix relative to a basis B = {ū1, . . . , ūn}. We put

F1 = (f11), F2 =

(
f11 f12
f21 f22

)
, F3 =

(
f11 f12 f13
f21 f22 f23
f31 f32 f33

)
, etc . . .

Then

1. ω is positive definite ⇐⇒ |Fi| > 0, for every i = 1, . . . , n.

2. ω is negative definite ⇐⇒ (−1)i|Fi| > 0, for every i = 1, . . . , n.

Proof:

1. =⇒: If ω is positive definite on the whole space U , it is also positive definite
when restricted to any subspace

Ui = L{ū1, . . . , ūi}.

The matrix of the restriction of ω to Ui is Fi. Because this restriction is positive
definite, Fi is congruent with Id, and in particular its determinant is positive.

⇐=: Let us assume that |Fi| > 0, for every i = 1, . . . , n. We will show by
induction that ω is positive definite:

- For n = 1 it is clear.

- Assume the result true for quadratic forms on vector spaces of dimension
≤ n− 1 and let us see that it is true for dimension n.

By our induction hypothesis we know that ω is positive definite on the vector
subspace U1 = L{ū1, . . . , ūn−1}. Hence there exists a basis B′1 of U1 relative to
which the matrix associated to the restriction of ω to U1 is the identity. Let us
consider the basis

B′ = B′1 ∪ {ū}
The matrix associated to ω relative to this basis is: I

a1
...

an−1

a1 . . . an−1 an


7
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If we diagonalize by congruence we obtain a matrix which is congruent to the
matrix F of ω relative to the initial basis:

C =

 I

0
...
0

0 . . . 0 b


Since F and C are congruent, their determinants have the same sign. Thus
|C| > 0, b > 0 and the signature of ω is (n, 0). Hence ω is indeed positive
definite.

2. To show that ω is negative definite ⇐⇒ (−1)i|Fi| > 0, for every i = 1, . . . , n,
take into account that

ω is negative definite ⇐⇒ −ω is positive definite.

Now it suffices to apply the previous item.
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