ÁLGEBRA LINEAL II

Práctica 2.3

Transformaciones ortogonales

(Curso 2013–2014)

- 1.— Se considera el espacio vectorial euclídeo \mathbb{R}^3 referido a una base ortonormal. Obtener la expresión matricial en esta base de:
- (a) la simetría ortogonal con respecto al subespacio $\mathcal{L}\{(1,1,1)\}$;
- (b) la simetría ortogonal con respecto al subespacio $\mathcal{L}\{(1,1,1),(2,0,1)\};$
- (c) la rotación de 60° alrededor del semieje que contiene al (1,1,1) (considerando en \mathbb{R}^3 la orientación correspondiente a la base de partida).
- 2.— En \mathbb{R}^3 se considera el producto escalar usual y la orientación dada por la base canónica. Calcular las ecuaciones del giro de 45 grados y semieje generado por el vector (1,1,1).

(Examen extraordinario, septiembre 2007)

 ${\bf 3.-}$ En \mathbb{R}^3 se considera el producto escalar cuya matriz de Gram respecto a la base canónica es:

$$G = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{pmatrix}.$$

Hallar la matriz asociada respecto de la base canónica de un giro de 36.87° , de semieje generado por el vector (1,0,0) y considerando como orientación positiva la dada por la base canónica.

Observación: $sin(36.87^{o}) = \frac{3}{5}$.

(Examen extraordinario, diciembre 2008)

4.- En \mathbb{R}^3 consideramos el producto escalar usual y la orientación de la base canónica. Se define la transformación ortogonal que en esta base tiene asociada la matriz

$$A = \frac{1}{2} \begin{pmatrix} 1 & \sqrt{2} & 1\\ -\sqrt{2} & 0 & \sqrt{2}\\ 1 & -\sqrt{2} & 1 \end{pmatrix}$$

Definir su naturaleza y descomponerla en giros y/o simetrías.

(Examen final, junio 2007)

5.— En el espacio vectorial euclídeo \mathbb{R}^3 y con respecto a una base ortonormal $\{\bar{e}_1, \bar{e}_2, \bar{e}_3\}$ se considera una transformación $t: \mathbb{R}^3 \to \mathbb{R}^3$ cuya matriz asociada en la base anterior es:

$$T = \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{pmatrix}.$$

Demostrar que es ortogonal. Hallar sus autovalores y autovectores. Interpretarla geométricamente, considerando la orientación de la base de partida.

6.— Sea el espacio euclideo \mathbb{R}^3 con el producto escalar usual y consideremos como orientación positiva la dada por la base canónica. Para cada $a, b \in R$, se considera un endomorfismo $t : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ cuya matriz asociada respecto de la base canónica es:

$$T = \begin{pmatrix} 0 & 1 & 0 \\ 3/5 & 0 & 4/5 \\ a & 0 & b \end{pmatrix}$$

- (i) Hallar los valores de a y b para las cuales t es una transformación ortogonal.
- (ii) Para los valores hallados en (i) clasificar la transformación ortogonal, indicando si procede el semieje de giro, ángulo de giro y/o subespacios de simetría.

(Examen final, mayo 2012)

7.— En R^3 se considera una aplicación bilineal $f: R^3 \times R^3 \longrightarrow R$ cuya matriz asociada respecto de la base canónica es:

$$F = \begin{pmatrix} 5 & 0 & -3 \\ 0 & 1 & 0 \\ -3 & 0 & 2 \end{pmatrix}.$$

Sea además un endomorfismo $t: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ con matriz asociada respecto de la base canónica:

$$T = \begin{pmatrix} -2 & 1 & 1 \\ 1 & 0 & -1 \\ -2 & 2 & 1 \end{pmatrix}.$$

- a) Probar que f es un producto escalar.
- b) ¿Es t es una transformación ortogonal con el producto escalar usual? ¿Y con el producto escalar definido por f?.
- c) En el caso de que si sea una transformación ortogonal, describir geométricamente t considerando como orientación positiva la dada por la base canónica (indicar si procede el ángulo y semieje de giro y/o el subespacio de simetría).

(Segundo parcial, junio 2008)

8.— Consideramos el espacio vectorial euclideo \mathbb{R}^3 con el producto escalar usual. Calcular la matriz asociada T_C (respecto de la base canónica) de una transformación ortogonal $t: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ que cumple:

$$det(T_C) = -1,$$
 $traza(T_C) = 1/5,$ $t(0,1,0) = (0,-1,0).$

¿Es única la solución?.

(Examen final, mayo 2011)

- 9.— En el espacio euclídeo \mathbb{R}^3 con el producto escalar usual consideramos los planos $\pi_1: x+y-z=0$ y $\pi_2: 2x-y+z=0$. Hallar las ecuaciones de un giro que lleve el plano π_1 en el plano π_2 .
- **10.** En el espacio euclídeo \mathbb{R}^3 y con respecto a una base ortonormal, se consideran los subespacios U generado por los vectores $\bar{u}_1=(1,2,-2)$ y $\bar{u}_2=(1,1,0)$ y V generado por el vector $\bar{v}=(1,0,-1)$. Hallar el subespacio vectorial simétrico del V respecto de U.

11.— Sea el espacio euclideo \mathbb{R}^3 con el producto escalar usual y consideremos como orientación positiva la dada por la base canónica. Para cada $a, b \in R$, se considera un endomorfismo $t : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ cuya matriz asociada respecto de la base canónica es:

$$T = \begin{pmatrix} a & a & b \\ a & a & -b \\ -b & b & 0 \end{pmatrix}$$

- (i) Hallar los valores de a y b para las cuales t es una transformación ortogonal.
- (ii) Para los valores hallados en (i) clasificar la transformación ortgonal, indicando si procede el semieje de giro, ángulo de giro y/o subespacios de simetría.

(Examen final, junio 2010)

12.— Sea T la matriz asociada a una transformación ortogonal en una determinada base de un espacio vectorial euclídeo V de dimensión 3. Se sabe que traza(T) = 2. Justificar que se trata de un giro y dar el correspondiente ángulo del mismo.

(Examen extraordinario, diciembre 2007)

- 13.— Consideramos el espacio ecuclideo \mathbb{R}^3 con el producto escalar usual. Sea $t: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ una transformación ortogonal y T la matriz asociada a t respecto una base B arbitraria. Razonar la falsedad o veracidad de las siguientes cuestiones:
 - (i) Si B es una base ortonormal entonces T es simétrica.
 - (ii) Si B es una base ortonormal entonces $T^{-1} = T^t$.
 - (iii) Si T es una simetría respecto a una recta entonces traza(T) = -1.
 - (iv) Si traza(T) = -1 entonces T es una simetría respecto a una recta.
 - (v) Si T^{2012} es un giro entonces T es un giro.

(Examen final, julio 2012)

- 14.— En \mathbb{R}^3 dotado del producto escalar usual y tomando como orientación positiva la dada por la base canónica se consideran las transformaciones ortogonales $f, g : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$. Se sabe que f es un giro de 90 grados y g un giro de 30 grados. Sean A, B las matrices asociadas respectivamente a f y g con respecto a la base canónica. Razonar la veracidad o falsedad de las siguientes afirmaciones:
 - (i) $A \cdot B$ es la matriz de una transformación ortogonal.
 - (ii) $A \cdot B$ es la matriz de un giro.
 - (iii) $A \cdot B$ es la matriz de un giro de 120 grados.
 - (iv) Si f y g tiene el mismo eje de giro, $A \cdot B$ es la matriz de un giro de 120 grados.
 - (v) $A \cdot B$ puede ser la matriz de un giro de 60 grados.

(Examen final, mayo 2013)

ÁLGEBRA LINEAL II

Problemas adicionales

Transformaciones ortogonales

(Curso 2013–2014)

I.— Sea V un espacio vectorial euclídeo. Sea $B = \{\bar{v}_1, \bar{v}_2, \bar{v}_3\}$ una base de V que define la orientación positiva. La matriz de Gram del producto escalar en la base B es:

$$G_B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

Calcular respecto a la base dada la matriz de giro de ángulo $\pi/3$ respecto al semieje generado por el vector (1,0,0)

(Segundo parcial, junio 2006)

II.— En R^3 con respecto al producto escalar usual y considerando como orientación positiva la dada por la base canónica escoger un semieje de giro y un ángulo de giro que lleve los semiejes positivos OX, OY, OZ en, respectivamente, los semiejes positivos OY, OZ, OX.

(Segundo parcial, junio 2009)

III.— Sea $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ una transformación ortogonal con respecto al producto escalar usual. Clasificarla indicando, si procede, el ángulo de giro y/o subespacio de simetría, sabiendo que:

$$f(1,0,0) = (-1,0,0),$$
 $det(F_{CC}) = -1,$ $traza(F_{CC}) = 1.$

(Examen final, junio 2008)

- IV.— Sea T la matriz asociada a una transformación ortogonal \mathbb{R}^2 respecto a una base arbitaria. Razonar la veracidad o la falsedad de las siguientes cuestiones:
 - (i) $|traza(T)| \leq 2$.
 - (ii) Si traza(T) = 2 entonces T = Id.
 - (iii) Si det(T) = -1 entonces traza(T) = 0.
 - (iv) Si traza(T) = 0 entonces det(T) = -1.

(Examen final, julio 2011)

- V.— En \mathbb{R}^2 con el producto escalar usual, hallar cuando sea posible, las ecuaciones de una transformación ortogonal directa que lleve el vector (3,4) en el vector:
 - a) (2,6).
 - b) (4,3)

(Examen final, diciembre 2009)

VI.— En \mathbb{R}^2 y en una base orientada $\{\vec{e}_1, \vec{e}_2\}$, tal que el módulo de \vec{e}_1 es 1 y el de \vec{e}_2 es $\sqrt{2}$. Hallar todas las transformaciones ortogonales que transforman el vector \vec{e}_1 en el vector $\frac{7}{5}\vec{e}_1 + \frac{4}{5}\vec{e}_2$.

(Examen final, junio 2004)

VII.— En \mathbb{R}^3 consideramos el producto escalar usual y la orientación determinada por la base canónica. Sea B una base de \mathbb{R}^3 dada por:

$$B = \{(1, 1, 0), (0, 1, 0), (0, 0, 1)\},\$$

y f el endomorfismo de \mathbb{R}_3 cuya matriz asociada con respecto a la base B es:

$$\begin{pmatrix}
3/5 & -8/5 & 4/5 \\
0 & -1 & 0 \\
-4/5 & 4/5 & 3/5
\end{pmatrix}$$

- (a) Probar que f es una transformación ortogonal.
- (b) Clasificar razonadamente f, indicando los subespacios de simetría y/o semieje y ángulo de giro.

(Examen final, diciembre 2005)

- VIII.— Se considera un espacio vectorial euclídeo V de dimensión 3, con la orientación correspondiente a una base B. Determinar e interpretar geométricamente todas las transformaciones ortogonales no diagonalizables definidas en V y cuya matriz en la base B tenga traza nula.
 - IX.— En \mathbb{R}^3 con respecto al producto escalar usual y tomando como orientación positiva la dada por la base canónica hallar las ecuaciones de un giro que lleve el subespacio vectorial U en V.

$$U = \{(x, y, z) \in R^3 | 3x + y - 4z = 0, y = 0\}, \qquad V = \mathcal{L}\{(0, 1, 0)\}.$$

(Examen final, julio 2009)

 \mathbf{X} . Determinar si el endomorfismo de \mathbb{R}^2 cuya matriz respecto a un base ortonormal es:

$$A = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix}$$

es una transformación ortogonal. En caso afirmativo clasificarla, indicando, si es un giro, el correspondiente ángulo y si es una simetría, el correspondiente eje.

(Examen final, junio 2006)

XI.— En \mathbb{R}^3 se consideran dos vectores independientes \bar{v} y \bar{u} que forman entre sí un ángulo α . Demostrar que la composición de la simetría respecto del subespacio generado por \bar{v} y de la simetría respecto del subespacio generado por \bar{u} es un giro, indicando la dirección del eje y el ángulo.

(Segundo parcial, junio 2002)