Álgebra Lineal II

Ejercicio único

(3 horas)

Examen Final

14 de Mayo de 2024

- **1.** De una forma cuadrática $w: \mathbb{R}^3 \to \mathbb{R}$ se sabe que:
 - a) $B = \{(1,0,1), (1,1,0), (0,0,1)\}$ es una base de vectores conjugados.
 - b) Es degenerada.
 - c) w(1,0,1) = -w(0,0,1) = 4.
 - (i) Hallar la matriz asociada a w respecto de la base canónica.
- (ii) Indicar el rango y la signatura de w.
- (iii) Hallar los vectores autoconjugados. Dar el resultado en la base canónica. Si es posible, descomponer el conjunto de vectores autoconjugados como unión de dos planos.
- (iv) Si f es la forma bilineal asociada a w hallar f((1,0,2),(0,2,3)).

(1.2 puntos)

2.— En el espacio vectorial de polinomios de grado menor o igual que 1, $\mathcal{P}_1(\mathbb{R})$ se considera la aplicación:

$$f: \mathcal{P}_1(\mathbb{R}) \times \mathcal{P}_1(\mathbb{R}) \to \mathbb{R}, \qquad f(p(x), q(x)) = \int_0^1 p(x) q(x) dx$$

- (i) Demostrar que f es un producto escalar.
- (ii) Respecto al producto escalar definido por f:
- (ii.a) Dar dos polinomios que formen una base ortonormal de $\mathcal{P}_1(\mathbb{R})$.
- (ii.b) Calcular la proyección ortogonal del polinomio 1+x sobre $U=\mathcal{L}\{1-x\}$

(1.3 puntos)

- 3.— Sea el espacio euclídeo \mathbb{R}^3 con el producto escalar usual hallar la matriz asociada de una simetría respecto a un plano, que lleve el vector (3,0,4) en el vector (5,0,0). (1.2 puntos)
- **4.** En el plano afín \mathbb{R}^2 se consideran dos triángulos homotéticos de vértices A,B,C y A',B',C' respectivamente. Sabiendo que $A=(1,0),\ B=(0,1),\ C=(1,2),\ A'=(3,0)$ y area(A'B'C')=4area(ABC):
- (a) Hallar las ecuaciones de una homotecia que lleve el primer triángulo en el segundo. ¿Es única?.
- (b) Hallar las coordenadas de B' y C'.

(1 punto)

- 5.— Razona la veracidad o falsedad de las siguientes cuestiones:
- (a) Si $f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ es una forma bilineal simétrica y su matriz asociada F_C cumple $traza(F_C) = 0$, entonces f NO es un producto escalar.
- (b) Si T_C es la matriz asociada a una transformación ortogonal en el plano y $traza(T_C) = 0$ entonces es una simetría.
- (c) Dados dos vectores $\vec{u}, \vec{v} \in \mathbb{R}^3$ siempre puede definirse un giro t, tal que $t(\vec{u}) = \vec{v}$.

(0.9 puntos)

- **6.** En el espacio afín euclídeo \mathbb{R}^3 se consideran el tetraedro de vértices $A=(0,0,0),\ B=(1,0,1),\ C=(1,1,0),\ D=(1,1,1).$
- (i) Calcular el ángulo que forman las caras ABC y BCD.
- (ii) Hallar el volumen y la superficie del tetraedro.

(1.2 puntos)

7.— En el plano afín y para cada $k \in \mathbb{R}$ se definela cónica de ecuación:

$$x^2 - 2xy + ky^2 - 2x + 2ky - 1 = 0$$

- (i) Clasificar la cónica en función de los valores de k.
- (ii) Para k = 0:
- (ii.a) Hallar las asíntotas y la excentricidad de la cónica.
- (ii.b) Calcular las rectas tangentes a la cónica que pasan por el punto (0,0).

(1.3 puntos)

8.— Hallar la ecuación de una cónica sabiendo que su centro es el punto (1,0), tiene un vértice en el punto (0,1) y una asíntota paralela al eje OY.

(1.3 puntos)

9.— Dada la cuádrica de ecuación:

$$y^2 + 5z^2 + 2xy - 4xz - 4yz + 4x + 2y - 4z = 0.$$

clasificar la superficie y esbozar un dibujo de la misma.

(0.6 puntos)

Álxebra Lineal II

Exercicio único

(3 horas.)

Exame Final 14 de maio 2024

- **1.** Dunha forma cuadrática $w : \mathbb{R}^3 \to \mathbb{R}$ se sabe que:
 - a) $B = \{(1,0,1), (1,1,0), (0,0,1)\}$ é unha base de vectores conxugados.
 - b) É dexenerada.
 - c) w(1,0,1) = -w(0,0,1) = 4.
 - (i) Atopar a matriz asociada a w respecto da base canónica.
- (ii) Indicar o rango e a signatura de w.
- (iii) Atopar os vectores autoconxugados. Dar o resultado na base canónica. Se é posible, descompoñer o conxunto de vectores autoconxugados coma unión de dous planos.
- (iv) Se f é a forma bilineal asociada a w atopar f((1,0,2),(0,2,3)).

(1.2 puntos)

2.— No espazo vectorial de polinomios de grao menor ou igual que 1, $\mathcal{P}_1(\mathbb{R})$ se considera a aplicación:

$$f: \mathcal{P}_1(\mathbb{R}) \times \mathcal{P}_1(\mathbb{R}) \to \mathbb{R}, \qquad f(p(x), q(x)) = \int_0^1 p(x)q(x)dx$$

- (i) Demostrar que f é un producto escalar.
- (ii) Respecto ó producto escalar definido por f:
- (ii.a) Dar dous polinomios que formen unha base ortonormal de $\mathcal{P}_1(\mathbb{R})$.
- (ii.b) Calcular a proxección ortogonal do polinomio 1 + x sobre $U = \mathcal{L}\{1 x\}$

(1.3 puntos)

- 3.— Sexa o espazo euclídeo \mathbb{R}^3 co producto escalar usual, atopar a matriz asociada dunha simetría respecto a un plano, que leve o vector (3,0,4) no vector (5,0,0). (1.2 puntos)
- **4.** No plano afín \mathbb{R}^2 se consideran dous triángulos homotéticos de vértices A,B,C e A',B',C' respectivamente. Sabendo que $A=(1,0),\ B=(0,1),\ C=(1,2),\ A'=(3,0)$ e area(A'B'C')=4area(ABC):
- (a) Atopar as ecuacións dunha homotecia que leve o primeiro triángulo no segundo. É única?.
- (b) Atopar as coordenadas de B' e C'.

(1 punto)

- 5.— Razoa a veracidade ou falsedade das seguintes cuestións:
- (a) Se $f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ é unha forma bilineal simétrica e a súa matriz asociada F_C cumple $traza(F_C) = 0$, entón f NON é un producto escalar.
- (b) Se T_C é a matriz asociada a unha transformación ortogonal no plano e $traza(T_C) = 0$ entón é unha simetría.
- (c) Dados dous vectores $\vec{u}, \vec{v} \in \mathbb{R}^3$ sempre pode definirse un xiro t, tal que $t(\vec{u}) = \vec{v}$.

(0.9 puntos)

- **6.** No espazo afín euclídeo \mathbb{R}^3 se consideran o tetraedro de vértices $A=(0,0,0),\,B=(1,0,1),\,C=(1,1,0),\,D=(1,1,1).$
 - (i) Calcular o ángulo que forman as caras ABC e BCD.
- (ii) Atopar o volumen e a superficie do tetraedro.

(1.2 puntos)

7.— No plano afín e para cada $k \in \mathbb{R}$ se define a cónica de ecuación:

$$x^2 - 2xy + ky^2 - 2x + 2ky - 1 = 0$$

- (i) Clasificar a cónica en función dos valores de k.
- (ii) Para k = 0:
- (ii.a) Atopar asíntotas e a excentricidade da cónica.
- (ii.b) Calcular as rectas tanxentes á cónica que pasan polo punto (0,0).

(1.3 puntos)

8.— Atopar a ecuación dunha cónica sabendo que o seu centro é o punto (1,0), ten un vértice no punto (0,1) e unha asíntota paralela ó eixo OY.

(1.3 puntos)

9.— Dada a cuádrica de ecuación:

$$y^2 + 5z^2 + 2xy - 4xz - 4yz + 4x + 2y - 4z = 0.$$

clasificar a superficie e esbozar un debuxo da mesma.

(0.6 puntos)