Endomorfismos

(Curso 2019–2020)

1.— Dada la matriz:

$$A = \begin{pmatrix} 3 & -2 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 \end{pmatrix}.$$

(a) Estudiar si es triangularizable por semejanza.

El polinomio característico es:

$$|A - \lambda Id| = -(\lambda - 1)^4(\lambda - 2).$$

Por tanto hay dos autovalores:

 $\lambda_1 = 1$ con multiplicidad algebraica 4

 $\lambda_2 = 2$ con multiplicidad algebraica 1

La suma de las multiplicidades algebraicas coincide con la dimensión de la matriz. Por tanto esta triangulariza.

(b) Hallar sus autovalores y autovectores.

Los autovalores asociados al autovalor 1 cumplen:

$$(A - Id) \begin{pmatrix} x \\ y \\ z \\ t \\ u \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \iff x - y = 0, \quad t = 0.$$

Son dos ecuaciones independientes, por tanto el subespacio característico tiene dimensión 5-2=3. Buscamos una base del mismo:

$$S_1 = \mathcal{L}\{(1, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 0, 1)\}.$$

Los autovalores asociados al autovalor 2 cumplen:

$$(A-2Id)\begin{pmatrix} x\\y\\z\\t\\u \end{pmatrix} = \begin{pmatrix} 0\\0\\0\\0\\0 \end{pmatrix} \iff x-2y=0, \quad z=0, \quad t=0, \quad u=0.$$

Son cuatro ecuaciones independientes, por tanto el subespacio característico tiene dimensión 5-4=1. Buscamos una base del mismo:

$$S_2 = \mathcal{L}\{(2, 1, 0, 0, 0)\}.$$

2.— Consideramos la matriz

$$A = \begin{pmatrix} -1 & -1 & -1 & -1 \\ 0 & -1 & 0 & 0 \\ 1 & 1 & 1 & 2 \\ 0 & 1 & 0 & -1 \end{pmatrix}.$$

(a) Probar que A es una matriz triangularizable.

Una matriz cuadrada es triangularizable si la suma de las multiplicidades algebraicas de sus autovalores coincide con su dimensión.

Calculemos los autovalores. Son las raíces de su polinomio característico:

$$p_A(\lambda) = |A - \lambda Id| = (-1 - \lambda)^2 \lambda^2.$$

Vemos que hay dos autovalores:

$$\lambda_1 = 0;$$
 $m(\lambda_1) = 2;$
 $\lambda_2 = -1;$ $m(\lambda_2) = 2;$

La suma de las multiplicidades es 4 y por tanto A triangulariza.

(c) Calcular los subespacios de autovectores de A.

Los espacios de autovectores de A son

$$\begin{split} S_{\lambda_1} &= S_0 = V_1 = ker(A - \lambda_1 Id) & \text{asociado a } \lambda_1 = 0. \\ S_{\lambda_2} &= S_{-1} = U_1 = ker(A - \lambda_2 Id) & \text{asociado a } \lambda_2 = -1. \end{split}$$

Ambos subespacios son de dimensión 1 ya que la multiplicidad geométrica de los dos autovalores es 1. En el apartado anterior hemos calculado además un vector que los genera:

$$S_0 = \mathcal{L}\{(-1,0,1,0)\}; \qquad S_{-1} = \mathcal{L}\{(0,0,-1,1)\}.$$

3. Sea el endomorfismo de \mathbb{R}^3 ,

$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
, $f(x, y, z) = (x + y + 3z, 4y, 3x - y + z)$

(i) Hallar la matriz F_C asociada a f respecto de la base canónica.

Calculamos la matriz directamente trasladando coeficientes.

$$F_C = \begin{pmatrix} 1 & 1 & 3 \\ 0 & 4 & 0 \\ 3 & -1 & 1 \end{pmatrix}$$

(ii) Demostrar que f es diagonalizable.

El endomorfismo es diagonalizable si y sólo si la suma de multiplicidades algebraicas de los autovalores coinciden con la dimensión del espacio $(dim(\mathbb{R}^3)=3)$ en este caso) y las multiplicidades geométricas coinciden con las algebraicas.

Comenzamos entonces calculando el polinomio característico:

$$p_f(\lambda) = det(F_C - \lambda Id) = det \begin{pmatrix} 1 - \lambda & 1 & 3 \\ 0 & 4 - \lambda & 0 \\ 3 & -1 & 1 - \lambda \end{pmatrix} = (4 - \lambda)det \begin{pmatrix} 1 - \lambda & 3 \\ 3 & 1 - \lambda \end{pmatrix} = (4 - \lambda)((1 - \lambda)^2 - 3^2) = (4 - \lambda)(4 - \lambda)(-2 - \lambda) = (4 - \lambda)^2(2 - \lambda)$$

Tenemos por tanto dos autovalores:

- $\lambda_1 = 4$ con mutliplicidad algebraica 2.
- $\lambda_2 = -2$ con multiplicidad algebraica 1.

La suma de algebraicas es tres.

La geométrica de $\lambda_2 = -2$ es uno por serlo también la algebraica.

Resta por comprobar por tanto que la geométrica de $\lambda_1 = 4$ es dos:

$$mg(4) = 3 - rg(F_C - 4Id) = 3 - rg\begin{pmatrix} -3 & 1 & 3 \\ 0 & 0 & 0 \\ 3 & -1 & -3 \end{pmatrix} = 3 - rg\begin{pmatrix} -3 & 1 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = 3 - 1 = 2.$$

(iii) Hallar los autovectores de f.

Los autovectores asociados a $\lambda_1 = 4$ son:

$$(F_C - 4Id)$$
 $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \iff -3x + y + 3z = 0$

Resolviendo y=3x-3z. Por tanto las paramétricas del subesp
cio característico asociado a $\lambda_1=4$ son:

$$x = \lambda, \qquad y = 3\lambda - 3\mu, \qquad z = \mu$$

y así

$$S_4 = \mathcal{L}\{(1,3,0), (0,-3,1)\}.$$

Los autovectores asociados a $\lambda_2 = -2$ son:

$$(F_C + 2Id)$$
 $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \iff 3x + y + 3z = 0, \qquad 6y = 0.$

Resolviendo y=0 e x=-z. Por tanto las paramétricas del subesp<io característico asociado a $\lambda_2=-2$ son:

$$x = \lambda, \qquad y = 0, \qquad z = -\lambda$$

v así

$$S_{-2} = \mathcal{L}\{(1,0,-1)\}.$$

(iv) Hallar una base de \mathbb{R}^3 respecto de la cual la matriz asociada a f sea diagonal.

Es la base de autovectores:

$$B = \{(1,3,0), (0,-3,1), (1,0,-1)\}.$$

(v) $Existe \ n \in \mathbb{N} \ tal \ que \ traza(F_C^n) = 3^{2017}$?

La traza de una matriz diagonalizable coincide con la suma de los autovalores (contados con multiplicidad).

Entonces:

$$traza(F_C^n) = 2 \cdot 4^n + (-2)^n$$

Pero esa expresión siempre es par para $n \ge 1$ por tanto es imposible que sea 3^{2017} .

4.— Para cada número real $a \in \mathbb{R}$ se definie el endomorfismo de \mathbb{R}^3 :

$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3, \quad f(x, y, z) = (x + 2y - 2z, 2x + y - 2z, az)$$

(i) Estudiar en función de los valores de a si el endomorfismo f es diagonalizable y/o triangularizable.

El endomorfismo es triangularizable si y sólo si la suma de las multiplicidades algebracias de los autovalores coincide con $dim(\mathbb{R}^3)$; es diagonalizable si además las multiplicidaes geométricas y algebraicas coinciden.

Los autovalores son las raíces del polinomio característico; para calcular éste comenzamos escribiendo la matriz asociada a F en la base canónica de \mathbb{R}^3 . En cada fila colocamos los coeficientes de cada componente de la imagen:

$$F_C = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & -2 \\ 0 & 0 & a \end{pmatrix}.$$

El polinomio característico es:

$$p(\lambda) = |F_C - \lambda Id| = \begin{vmatrix} 1 - \lambda & 2 & -2 \\ 2 & 1 - \lambda & -2 \\ 0 & 0 & a - \lambda \end{vmatrix} = (a - \lambda) \begin{vmatrix} 1 - \lambda & 2 \\ 2 & 1 - \lambda \end{vmatrix} =$$
$$= (a - \lambda)((1 - \lambda)^2 - 2^2) = (a - \lambda)(3 - \lambda)(-1 - \lambda)$$

Teniendo en cuenta si alguna de las raíces del polinomio se repite o no, distinguimos los siguientes casos:

- Si $a \neq -1, 3$ las tres raíces son distintas. Los autovalores son por tanto:

 $\lambda_1=a$ con multipliciad algebraica 1. $\lambda_2=3$ con multipliciad algebraica 1. $\lambda_3=-1$ con multipliciad algebraica 1.

La suma de algebraicas es 3 por tanto el endomorfismo triangulariza. Además si multiplicidades algebraicas son 1 las geométricas también valen 1. Concluimos que el endomorfismo también diagonaliza.

- Si a=-1, el polinomio queda $p(\lambda)=(-1-\lambda)^2(3-\lambda)$. Los autovalores son por tanto:

 $\lambda_1 = -1$ con multipliciad algebraica 2. $\lambda_2 = 3$ con multipliciad algebraica 1.

La suma de algebraicas es 3 por tanto el endomorfismo triangulariza. Para $\lambda_2=3$ la multiplicidad algebraica es 1 y así la geométrica también. Para el autovalor $\lambda_1=-1$ calculamos la multipliciad geométrica:

$$m.g(-1) = 3 - rango(F_C - (-1)Id) = 3 - rango\begin{pmatrix} 2 & 2 & -2 \\ 2 & 2 & -2 \\ 0 & 0 & 0 \end{pmatrix} = 3 - 1 = 2 = m.a(-1).$$

Vemos que para ambos autovalores la multipliciad geométrica y algebraica coincide: el endomorfismo diagonaliza.

- Si a=-3, el polinomio queda $p(\lambda)=(3-\lambda)^2(-1-\lambda)$. Los autovalores son por tanto:

 $\lambda_1=3$ con multipliciad algebraica 2. $\lambda_2=-1$ con multipliciad algebraica 1.

La suma de algebraicas es 3 por tanto el endomorfismo triangulariza. Para $\lambda_2=-1$ la multiplicidad algebraica es 1 y así la geométrica también. Para el autovalor $\lambda_1=3$ calculamos la multipliciad geométrica:

$$m.g(3) = 3 - rango(F_C - 3Id) = 3 - rango\begin{pmatrix} -2 & 2 & -2 \\ 2 & -2 & -2 \\ 0 & 0 & 0 \end{pmatrix} = 3 - 2 = 1 \neq m.a(3).$$

Vemos que las multiplicidades geométrica y algebraica de $\lambda_1=3$ NO coinciden, por tanto el endomorfismo no diagonaliza.

Conclusión: El endormorfismo triangulariza para cualquier valor de a y diagonaliza para cualquier valor distinto de a = -3.

(ii) Para a = 0 calcular una base B respecto a la cuál la matriz asociada F_B sea diagonal.

Hemos visto que para a=0 el endomorfismo es diagonalizable. La base B respecto a la cuál diagonaliza es la formada por los autovectores.

Vimos que los autovalores eran $\lambda_1 = 0$, $\lambda_2 = 3$ y $\lambda_3 = -1$. Calculamos una autovector asociado a cada uno de ellos.

- Autovalores asociados a $\lambda_1 = 0$:

$$(F_C - 0 \cdot Id) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \iff x + 2y - 2z = 0, \quad 2x + y - 2z = 0$$

Resolviendo en función de un parámetro:

$$x = 2a$$
, $y = 2a$, $z = 3a$

El subespacio característico asociado a $\lambda_1 = 0$ queda $S_0 = \mathcal{L}\{(2,2,3)\}.$

- Autovalores asociados a $\lambda_2 = 3$:

$$(F_C - 3 \cdot Id) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \iff -2x + 2y - 2z = 0, \quad -3z = 0$$

Resolviendo en función de un parámetro:

$$x = a$$
, $y = a$, $z = 0$

El subespacio característico asociado a $\lambda_2 = 3$ queda $S_3 = \mathcal{L}\{(1,1,0)\}.$

- Autovalores asociados a $\lambda_3 = -1$:

$$(F_C - (-1) \cdot Id) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \iff 2x + 2y - 2z = 0, \quad z = 0$$

Resolviendo en función de un parámetro:

$$x = a$$
, $y = -a$, $z = 0$

El subespacio característico asociado a $\lambda_2 = 3$ queda $S_3 = \mathcal{L}\{(1, -1, 0)\}$.

Por tanto la base B pedida es:

$$B = \{(2, 2, 3), (1, 1, 0), (1, -1, 0)\}.$$

(iii) Para a = 1 calcular $traza(F_C^{1515})$.

Para a=1 el endomorfismo es triangularizable. Sabemos entonces que existe una base B' tal que:

$$F_{B'} = M_{B'C}^{-1} F_C M_{B'C}$$

donde $F_{B'}$ es una matriz diagonal formada por los autovalores. Equivalentemente:

$$F_C = M_{B'C} F_C M_{B'C}^{-1}$$

De ahí se deduce que:

$$F_C^{1515} = M_{B'C} F_{B'}^{1515} M_{B'C}^{-1}.$$

Usando la propiedad de la traza $traza(X) = traza(P^{-1}XP)$ tenemos que:

$$traza(F_C^{1515}) = traza(F_{B'}^{1515}).$$

Vimos que para a = 1 los autovalores son 1,3 y -1. Por tanto:

$$F_{B'} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

у

$$F_{B'}^{1515} = \begin{pmatrix} 1^{1515} & 0 & 0 \\ 0 & 3^{1515} & 0 \\ 0 & 0 & (-1)^{1515} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3^{1515} & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

Finalmente:

$$traza(F_C^{1515}) = traza(F_{B'}^{1515}) = 1 + 3^{1515} - 1 = 3^{1515}.$$

5.— Para cada $a \in \mathbb{R}$ definimos la aplicación lineal:

$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
, $f(x, y, z) = (y + (a - 1)z, (1 - a)x + ay + z, x - y + 2z)$

a) Hallar la matriz F_C asociada a f respecto de la base canónica.

La base canónica es de \mathbb{R}^3 es $C = \{(1,0,0), (0,1,0), (0,0,1)\}$. Se tiene que:

$$f(1,0,0) = (0,1-a,1)$$

$$f(0,1,0) = (1,a,-1)$$

$$f(0,0,1) = (a-1,1,2)$$

y por tanto:

$$F_C = \begin{pmatrix} 0 & 1 & a-1 \\ 1-a & a & 1 \\ 1 & -1 & 2 \end{pmatrix}.$$

b) Estudiar para que valores de a el endomorfismo es diagonalizable.

Para que sea diagonalizable las suma de las multiplicidades algebraicas de los autovalores del endomorfismo ha de coindicidir con la dimensión de \mathbb{R}^3 . Además las multiplicidades algebraicas tienen que coincidir con las geométricas.

Los autovalores son las raíces del polinomio característicos. Comenzamos hallando éste:

$$|F_C - \lambda Id| = \begin{vmatrix} -\lambda & 1 & a - 1 \\ 1 - a & a - \lambda & 1 \\ 1 & -1 & 2 - \lambda \end{vmatrix} = \begin{vmatrix} -\lambda & 1 - \lambda & a - 1 \\ 1 - a & 1 - \lambda & 1 \\ 1 & 0 & 2 - \lambda \end{vmatrix} = (1 - \lambda) \begin{vmatrix} -\lambda & 1 & a - 1 \\ 1 - a & 1 & 1 \\ 1 & 0 & 2 - \lambda \end{vmatrix} = (1 - \lambda) \begin{vmatrix} -\lambda - 1 + a & 0 & a - 2 \\ 1 - a & 1 & 1 \\ 1 & 0 & 2 - \lambda \end{vmatrix} = (1 - \lambda)(\lambda^2 - (a + 1)\lambda + a)$$

Resolvemos la ecuación:

$$\lambda^{2} - (a+1)\lambda + a = 0 \iff \lambda = \frac{a+1 \pm \sqrt{(a+1)^{2} - 4a}}{2} = \begin{cases} 1 \\ a \end{cases}$$

y deducimos en definitiva que:

$$p(\lambda) = |F_C - \lambda Id| = (1 - \lambda)^2 (\lambda - a)$$

Por tanto los autovalores son 1 y a (pueden coincidir si a=1). Para fijar sus multiplicidades distinguimos dos casos:

- Si a=1 entonces el único autovalor es $\lambda_1=1$ con multiplicidad algebraica 3.
- Si $a \neq 1$ los autovalores son:

 $\lambda_1 = 1$ con multiplicidad algebraica 2.

 $\lambda_2 = a$ con multiplicidad algebraica 1.

En cualquiera de los dos casos la suma de las multiplicidades algebraicas coincide con la dimensión de la matriz.

Si la multiplicidad algebraica es 1 entonces la geométrica también es 1; sólo nos resta investigar entonces la multiplicidad geométrica del autovalor 1:

$$mg(1) = 3 - rango(F_C - Id)$$

у

$$rango(F_C - Id) = rango\begin{pmatrix} -1 & 1 & a - 1 \\ 1 - a & a - 1 & 1 \\ 1 & -1 & 1 \end{pmatrix} = 3 - rango\begin{pmatrix} -1 & 0 & a \\ 1 - a & 0 & a \\ 1 & 0 & 0 \end{pmatrix}$$

Deducimos que:

- Si a = 0 entonces $rango(F_C Id) = 1$ y mg(1) = 3 1 = 2.
- Si $a \neq 0$ entonces $rango(F_C Id) = 2$ y mg(1) = 3 2 = 1.

De manera que:

- Si a = 0 entonces ma(1) = 2 = 2 = mg(1) y entonces SI diagonaliza.
- Si a=1 entonces $ma(1)=3\neq 1=mg(1)$ y entonces NO diagonaliza.
- Si $a \neq 0, 1$ entonces $ma(1) = 2 \neq 1 = mg(1)$ y entonces NO diagonaliza.
- c) Para aquellos valores de a para los que el endomorfismo f es diagonalizable:

Acabamos de ver que diagonaliza para a = 0.

c1) Hallar una base de \mathbb{R}^3 en la cuál la matriz asociada a f es diagonal.

La base en la cual diagonaliza es la formada por los autovectores. Hemos visto que para a=0 los autovalores son:

 $\lambda_1 = 1$ con multiplicidad algebraica 2.

 $\lambda_2 = 0$ con multiplicidad algebraica 1.

Calculamos los autovectores asociados. Para $\lambda_1 = 1$:

$$S_1 = \{(x, y, z) \in \mathbb{R}^3 | (F_C - Id) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \}$$

Operando queda:

$$S_1 = \{(x, y, z) \in \mathbb{R}^3 | -x + y - z = 0\} = \mathcal{L}\{(1, 0, -1), (1, 1, 0)\}.$$

Para $\lambda_1 = 0$:

$$S_0 = \{(x, y, z) \in \mathbb{R}^3 | (F_C - 0 \cdot Id) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \}$$

Operando queda:

$$S_0 = \{(x, y, z) \in \mathbb{R}^3 | y - z = x + y = 0\} = \mathcal{L}\{(1, -1, -1)\}.$$

La base de autovectores queda por tanto:

$$B = \{(1,0,-1), (1,1,0), (1,-1,-1)\}$$

y la correspondiente matriz diagonal:

$$F_B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

c2) Calcular F_C^{2011} .

Sabemos que:

$$F_C = M_{CB} F_B M_{CB}^{-1} \quad \Rightarrow \quad F_C^{2011} = M_{CB} F_B^{2011} M_{CB}^{-1}.$$

Pero:

$$F_B^{2011} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}^{2011} = \begin{pmatrix} 1^{2011} & 0 & 0 \\ 0 & 1^{2011} & 0 \\ 0 & 0 & 0^{2011} \end{pmatrix} = F_B.$$

Y entonces:

$$F_C^{2011} = M_{CB} F_B^{2011} M_{CB}^{-1} = M_{CB} F_B M_{CB}^{-1} = F_C. \label{eq:fc}$$

6.— Sea la matriz:

$$A = \begin{pmatrix} 1 & 0 & 2 & b \\ a & 1 & 2 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 3 & 2 \end{pmatrix}$$

(i) Estudiar en función de los valores a y b si A es diagonalizable o triangularizable por semejanza.

La matriz triangulariza si la suma de las multiplicidades algebraicas coincide con la dimensión de la matriz (4 en este caso).

Diagonaliza si además las multiplicidades geométricas y algebraicas de todos los autovalores coinciden.

Para hallar los autovalores comenzamos calculando el polinomio característico.

$$p_A(\lambda) = |A - \lambda Id| = \begin{vmatrix} 1 - \lambda & 0 & 2 & b \\ a & 1 - \lambda & 2 & 1 \\ 0 & 0 & 1 - \lambda & 0 \\ 0 & 0 & 3 & 2 - \lambda \end{vmatrix} =$$

$$= \begin{vmatrix} 1 - \lambda & 0 \\ a & 1 - \lambda \end{vmatrix} \begin{vmatrix} 1 - \lambda & 0 \\ 3 & 2 - \lambda \end{vmatrix} = (1 - \lambda)^2 (1 - \lambda)(2 - \lambda) = (1 - \lambda)^3 (2 - \lambda).$$

Los autovalores son sus raíces:

 $\lambda_1 = 1$ con multiplicidad algebraica 3.

 $\lambda_2 = 2$ con multiplicidad algebraica 1.

La suma de algebraicas es 3+1=4 y por tanto la matriz triangulariza para cualesquiera valores de a y b.

Para ver si diagonaliza tenemos que estudiar si las multiplicidades algebraicas y geométricas coinciden.

Para $\lambda_2 = 2$ dado que su multiplicidad algebraica es 1 necesariamente la geométrica también lo es.

Para $\lambda_1 = 1$ tenemos:

$$m.g.(1) = 4 - rango(A - 1Id) = 4 - rango\begin{pmatrix} 0 & 0 & 2 & b \\ a & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 3 & 1 \end{pmatrix}$$

Vemos que el menor formado por las dos últimas columnas y filas 2 y 4 tiene determinante no nulo:

$$\begin{vmatrix} 2 & 1 \\ 3 & 1 \end{vmatrix} = -1 \neq 0.$$

Por tanto el rango como mínimo es 2 y:

$$m.g.(1) = 4 - rango(A - 1Id) < 4 - 2 = 2$$

Es decir la multiplicidad geométrica de $\lambda_1 = 1$ nunca podrá ser igual a la algebraica 3. Por tanto la matriz NO diagonaliza para cualesquiera valores de a y b.

- (ii) Para los valores de a y b para los cuales la matriz diagonaliza por semejanza:Dado que la matriz no diagonaliza nunca por semejanza no hay nada que hacer en estos apartados.
- (ii.a) Hallar los autovectores de A.
- (ii.b) Hallar una matriz diagonal D y una matriz P tales que $D = P^{-1}AP$.
- (ii.c) $Hallar traza(A^{40})$.

7.— Dados los números $a, b \in \mathbb{R}$ se define la matriz:

$$A = \begin{pmatrix} a & -a & 0 \\ 1 & -1 & 0 \\ b & 1 & 0 \end{pmatrix}$$

(i) Estudiar en función de a y b si diagonaliza y/o triangulariza por semejanza. En los casos en los que diagonaliza escribir una matriz diagonal semejante a A.

La matriz triangulariza por semejanza si la suma de las multiplicidades algebraicas de sus autovalores es 3; diagonaliza si además las multiplicidades algebraicas y geométricas coinciden.

Dado que los autovalores son las raíces del polinomio característico, comenzamos calculando éste:

$$|A - \lambda Id| = \begin{vmatrix} a - \lambda & -a & 0 \\ 1 & -1 - \lambda & 0 \\ b & 1 & -\lambda \end{vmatrix} = -\lambda \begin{vmatrix} a - \lambda & -a \\ 1 & -1 - \lambda \end{vmatrix} =$$
$$= -\lambda((a - \lambda)(-1 - \lambda) + a) = -\lambda(\lambda^2 - \lambda(a - 1)) = -\lambda^2(\lambda - (a - 1))$$

Notamos que el polinomio tiene dos raíces 0 y a-1 que coinciden cuando a-1=0, es decir, a=1. Distinguimos dos casos:

1) Si a=1, entonces existe un único autovalor real $\lambda_1=0$ con multiplicidad algebraica 3. Por tanto triangulariza.

Para ver si diagonaliza analizamos la multiplicidad geométrica:

$$m.g(0) = 3 - rango(A - 0Id) = 3 - rango\begin{pmatrix} 1 & -1 & 0 \\ 1 & -1 & 0 \\ b & 1 & 0 \end{pmatrix} < 3$$

(ya que el rango de A nunca es cero). Por tanto NO diagonaliza por semejanza.

2) Si $a \neq 1$ entonces existen dos autovalores reales:

 $\lambda_1 = 0$ con multiplicidad algebraica 2.

 $\lambda_2 = a - 1$ con multiplicidad algebraica 1.

La suma de las multiplicidades algebraicas es 3 y por tanto triangulariza. Analizamos las geométricas. Para el autovalor λ_2 dado que su multiplicidad algebraica es 1, la geométrica también.

Para el autovalor λ_1 :

$$\begin{split} m.g(0) &= 3 - rango(A - 0Id) = 3 - rango\begin{pmatrix} a & -a & 0 \\ 1 & -1 & 0 \\ b & 1 & 0 \end{pmatrix} = 3 - rango\begin{pmatrix} 0 & 0 & 0 \\ 1 & -1 & 0 \\ b & 1 & 0 \end{pmatrix} = \\ &= 3 - rango\begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 + b & 0 \\ 0 & 0 & 0 \end{pmatrix} \end{split}$$

Si b = -1 queda m.g.(0) = 3 - 1 = 2 = m.a.(0) y por tanto diagonaliza.

Si $b \neq -1$ queda $m.g.(0) = 3 - 2 = 1 \neq m.a.(0)$ y por tanto NO diagonaliza.

En resumen:

- La matriz A triangulariza siempre por semejanza.
- Diagonaliza si y sólo si b=-1 y $a\neq 1$. En ese caso una forma diagonal semejante a ella es:

$$D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & a - 1 \end{pmatrix}.$$

(ii) $Para\ a = 2\ y\ b = -1\ calcular\ A^{2017}$.

Vimos en el apartado anterior que en este caso la matriz diagonaliza a la forma diagonal:

$$D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Eso quiere decir que existe una matriz inversible ${\cal P}$ tal que:

$$D = P^{-1}AP \iff A = PDP^{-1}$$

Entonces:

$$A^{2017} = PD^{2017}P^{-1} = P\begin{pmatrix} 0^{2017} & 0 & 0 \\ 0 & 0^{2017} & 0 \\ 0 & 0 & 1^{2017} \end{pmatrix}P^{-1} = P\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}P^{-1} = PDP^{-1} = A.$$

(iii) $Para\ a=0\ y\ b=1\ calcular\ sus\ autovectores.$

Según vimos en (i) en este caso los autovalores son $\lambda_1 = 0$ y $\lambda_2 = -1$.

Calculamos los autovectores asociados a $\lambda_1 = 0$:

$$(A - 0 \cdot Id) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \iff \begin{pmatrix} 0 & 0 & 0 \\ 1 & -1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \iff x - y = 0, \quad x + y = 0.$$

Resolviendo el sistema obtenemos x = y = 0 y así

$$S_0 = \mathcal{L}\{(0,0,1)\}.$$

Calculamos los autovectores asociados a $\lambda_2 = -1$:

$$(A+1\cdot Id)\begin{pmatrix} x\\y\\z \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix} \iff \begin{pmatrix} 1&0&0\\1&0&0\\1&1&1 \end{pmatrix} \begin{pmatrix} x\\y\\z \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix} \iff x=0, \quad x+y+z=0.$$

Resolviendo el sistema obtenemos:

$$S_{-1} = \mathcal{L}\{(0,1,-1)\}.$$

8.— Para cada número $a \in \mathbb{R}$ se define la matriz:

$$A = \begin{pmatrix} 1 & 0 & 0 & a \\ 2 & 1 & -2 & 0 \\ 1 & 0 & a & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

(i) Estudiar los valores de a para los cuales A es diagonalizable por semejanza.

Para que diagonalice por semejanza la suma de multipliciades algebraicas de los autovalores de A debe de ser 4 y las multiplicidades algebraicas y geométricas deben de coincidir.

Comenzamos entonces calculando el polinomio característico; sus raíces son los autovalores de A.

$$|A - \lambda Id| = \begin{vmatrix} 1 - \lambda & 0 & 0 & a \\ 2 & 1 - \lambda & -2 & 0 \\ 1 & 0 & a - \lambda & 0 \\ 0 & 0 & 0 & 1 - \lambda \end{vmatrix} = (1 - \lambda) \begin{vmatrix} 1 - \lambda & 0 & 0 \\ 2 & 1 - \lambda & -2 \\ 1 & 0 & a - \lambda \end{vmatrix} = (1 - \lambda)^2 \begin{vmatrix} 1 - \lambda & -2 \\ 0 & a - \lambda \end{vmatrix} = (1 - \lambda)^3 (a - \lambda).$$

Vemos que los autovalores son:

 $\lambda_1 = 1$ con multiplicidad algebraica 3.

 $\lambda_2 = a$ con multipliciadd algebraica 1.

Distinguimos el caso particular a=1 en cuyo caso simplemente tendríamos:

 $\lambda_1 = 1$ con multiplicidad algebraica 4.

En cualquier caso la suma de algebraicas es 4 y la matriz triangulariza por semejanza. Veamos que ocurre con las multiplicidades geométricas.

Si $a \neq 1$, para $\lambda_2 = a$, la multiplicidad algebraica es 1 y por tanto la geométrica también.

Para $\lambda_1 = 1$:

$$\begin{split} mg(1) = & 4 - rango(A - 1Id) = 4 - rango\begin{pmatrix} 0 & 0 & 0 & a \\ 2 & 0 & -2 & 0 \\ 1 & 0 & a - 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \\ & = & 4 - rango\begin{pmatrix} 0 & 0 & a \\ 2 & -2 & 0 \\ 1 & a - 1 & 0 \end{pmatrix} = & 4 - rango\begin{pmatrix} a & 0 & 0 \\ 0 & 2 & -2 \\ 0 & 1 & a - 1 \end{pmatrix} = \\ & = & 4 - rango\begin{pmatrix} a & 0 & 0 \\ 0 & 2 & -2 \\ 0 & 0 & a \end{pmatrix} = & \begin{cases} 4 - 3 = 1 \text{ si } a \neq 0 \\ 4 - 1 = 3 \text{ si } a = 0 \end{cases} \end{split}$$

Vemos que las geométricas y las algebraicas coinciden cuando a = 0.

Si a=1, entonces exactamente con el mismo razonamiento que antes vemos que:

$$mg(1) = 4 - 3 = 1 \neq 4 = ma(1)$$

y por tanto NO diagonaliza.

Resumiendo, diagonaliza si y sólo si a = 0.

(ii) Hallar a para que $traza(A^4) = 19$.

La traza se conserva por semejanza y por tanto es igual a la suma de los autovalores; queda:

$$19 = traza(A^4) = 3 \cdot \lambda_1^2 + \lambda_2^2 = 3 + a^2 \implies a^2 = 16.$$

por tanto $a = \pm 2$.

- (iii) $Para\ a = 0$:
- (a) Calcular los autovectores de A.

Vimos que para a = 0 los autovalores son:

 $\lambda_1 = 1$ con multiplicidad algebraica 3.

 $\lambda_2 = 0$ con multipliciadd algebraica 1.

Calculamos los autovectores asociados a $\lambda_1 = 1$:

$$(A - 1 \cdot Id) \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \iff x - z = 0.$$

Por tanto:

$$S_1 = \{(x, y, z, t) \in \mathbb{R}^4 | x - z = 0\} = \mathcal{L}\{(1, 0, 1, 0), (0, 1, 0, 0), (0, 0, 0, 1)\}.$$

Calculamos los autovectores asociados a $\lambda_2 = 0$:

$$(A - 0 \cdot Id) \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \iff x = 0, \quad 2x + y - 2z = 0, \quad t = 0.$$

Por tanto:

$$S_0 = \{(x, y, z, t) \in \mathbb{R}^4 | x = 0, \quad 2x + y - 2z = 0, \quad t = 0.\} = \mathcal{L}\{(0, 2, 1, 0)\}.$$

(b) Hallar una matriz inversible P y una matriz diagonal D tal que $P^{-1}AP = D$.

La matriz diagonal es la formada por los autovalores repetidos tantas veces como indica su multiplicidad:

$$D = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

y la matriz P aquella cuyas columnas son los correspondientes autovectores:

$$P = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

9.— Para cada $a \in \mathbb{R}$ se define la matriz:

$$A = \begin{pmatrix} -3 & -2 & 0 & a \\ 4 & 3 & 0 & 0 \\ 0 & 0 & 1 & a \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

(i) Estudiar en función de los valores de a cuando diagonaliza y/o triangularizar por semejanza.

Comenzamos calculando el polinomio característico:

$$|A - \lambda Id| = \begin{vmatrix} -3 - \lambda & -2 & 0 & a \\ 4 & 3 - \lambda & 0 & 0 \\ 0 & 0 & 1 - \lambda & a \\ 0 & 0 & 0 & 1 - \lambda \end{vmatrix}$$
$$= \begin{vmatrix} -3 - \lambda & -2 \\ 4 & 3 - \lambda \end{vmatrix} \begin{vmatrix} 1 - \lambda & a \\ 0 & 1 - \lambda \end{vmatrix} = (\lambda^2 - 1)(1 - \lambda)^2 = (\lambda - 1)^3(\lambda + 1).$$

Los autovalores son sus raíces:

- $\lambda_1 = 1$ con multiplicidad algebraica 3.
- $\lambda_2 = -1$ con multiplicidad algebraica 1.

La suma de multiplicidades algebraicas coincide con el orden de la matriz; por tanto SIEMPRE triangulariza por semejanza.

Diagonalizará si las mutliplicidades geométricas coinciden con las algebraicas. Para $\lambda_2 = -1$ dado que la multiplicidad algebraica es 1 la geométrica también lo es.

Para $\lambda_1 = 1$ su multiplicidad algebraica es 3 y:

$$\begin{split} \text{m.geom\'etrica}(\lambda_1) &= 4 - rango(A - Id) = 4 - rg \begin{pmatrix} -4 & -2 & 0 & a \\ 4 & 2 & 0 & 0 \\ 0 & 0 & 0 & a \\ 0 & 0 & 0 & 0 \end{pmatrix} = \\ &= 4 - rg \begin{pmatrix} -4 & -2 & 0 & a \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & a \\ 0 & 0 & 0 & 0 \end{pmatrix} = \begin{cases} 4 - 1 = 3 \text{ si } a = 0 \\ 4 - 2 = 2 \text{ si } a \neq 0 \end{cases} \end{split}$$

Concluimos que diagonaliza si y sólo si a = 0.

(ii) Para a = 0 calcular una matriz P y una matriz diagonal D tal que $P^{-1}AP = D$. Para cada natural n hallar traza (A^n) .

Vimos que para a=0 la matriz diagonaliza por semejanza. La matriz diagonal es la formada por los autovalores repetidos tantas veces como indique su multiplicidad:

$$D = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}.$$

La matriz de paso P es aquella cuyas columnas son una base de autovectores de A.

Calculemos los autovectores asociados a $\lambda_1 = 1$:

$$(A-Id)(x, y, z, t)^t = (0, 0, 0, 0)^t \iff 2x + y = 0$$

Pasando a paramétricas se obtiene:

$$x = a$$
, $y = -2a$, $z = b$, $t = c$

y así:

$$S_1 = \mathcal{L}\{(1, -2, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)\}.$$

Ahora los autovectores asociados a $\lambda_2 = -1$:

$$(A+Id)(x,y,z,t)^t = (0,0,0,0)^t \iff 2x+2y=0, \quad 2z=0, \quad 2t=0$$

Pasando a paramétricas se obtiene:

$$x = a, \quad y = -a, \quad z = 0, \quad t = 0$$

y así:

$$S_{-1} = \mathcal{L}\{(1, -1, 0, 0)\}.$$

Por tanto la matriz P queda:

$$\begin{pmatrix}
1 & 0 & 0 & 1 \\
-2 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{pmatrix}.$$

Finalmente para calcular $traza(A^n)$ tenemos en cuenta que

$$D = P^{-1}AP \implies A = PDP^{-1} \implies A^n = PD^nP^{-1}$$

Además como la traza se conserva por semejenza:

$$traza(A^n) = traza(PD^nP^{-1}) = traza(D^n) = 1^n + 1^n + 1^n + (-1)^n = 3 + (-1)^n = \begin{cases} 4 & \text{si } n \text{ par} \\ 2 & \text{si } n \text{ impar} \end{cases}$$

(iii) $Para\ a = 1\ hallar\ una\ forma\ de\ Jordan\ J\ semejante\ a\ A.$

Para a = 1 vimos que triangulariza y:

- El autovalor $\lambda_1 = 1$ tiene multiplicidad algebraica 3 y geométrica 2. Por tanto hay dos cajas de Jordan asociadas al mismo cuya suma de dimensiones es 3. La única posibilidad es una de tamaño 2 y otra de tamaño 1.
- El autovalor $\lambda_2=1$ tiene multiplicidad algebraica y geométrica 1. Hay una única caja de Jordan asociada al mismo de dimensión 1.

Por tanto una forma de Jordan semejante a ${\cal A}$ será:

$$J = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}.$$

(iv) Para a=2 si A es la matriz asociada a un endomorfismo f de \mathbb{R}^4 respecto de la base canónica calcular f(1,0,2,1).

Simplemente:

$$f(1,0,2,1) = F_C(1,0,2,1)^t = A(1,0,2,1)^t = (-1,4,4,1).$$

10.— Dada la matriz $A = \begin{pmatrix} 1 & 1 \\ a & 1 \end{pmatrix}$ estudiar para que valores de a es diagonalizable y/o triangularizable por semejanza. En los casos que sea diagonalizable dar la correspondiente forma diagonal.

La matriz triangulariza por semejanza si y sólo si la suma de multiplicidades algebraicas de los autovalores coincide con la dimensión de la matriz, es decir, en este caso si es 2. Diagonaliza por semejanza si además las multipliciades geométricas y algebraicas coinciden.

Para hallar los autovalores y sus multiplicidades comenzamos calculando el polinomio caracteístico:

$$p_A(\lambda) = |A - \lambda Id| = (1 - \lambda)^2 - a = \lambda^2 - 2\lambda + 1 - a$$

Los autovalors son sus raíces:

$$\lambda^2 - 2\lambda + 1 - a = 0 \iff \lambda = 1 \pm \sqrt{1 - (1 - a)} = 1 \pm \sqrt{a}$$

Distinguimos casos dependiendo del signo del discriminante a. Si es negativo no existen races reales. Entonces:

- Si a < 0 no existen autovalores reales. Por tanto la matriz ni triangulariza ni diagonaliza por semejanza.
- Si a=0, el polinomio característico es $p_A(\lambda)=(1-\lambda)^2$. Sólo hay un autovalor $\lambda_1=1$ con multiplicidad algebraica 2 y por tanto la matriz triangulariza por semejanza.

Su multiplicidad geométrica es:

$$mg(1) = 2 - rango(A - Id) = 2 - rango\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = 2 - 1 = 1 \neq 1 = ma(1).$$

Por tanto NO diagonaliza por semejanza.

- Si a < 0 tenemos dos autovalores con multiplicidad algebraica 1, $\lambda_1 = 1 - \sqrt{a}$ y $\lambda_2 = 1 + \sqrt{a}$. La suma de algebraicas es 1 + 1 = 2 y por tanto SI trinagulariza por semejanza.

Además dado que las algebraicas son 1 las geométricas también y así la matriz diagonaliza por semejanza. La forma diagonal es:

$$D = \begin{pmatrix} 1 - \sqrt{a} & 0\\ 0 & 1 + \sqrt{a} \end{pmatrix}.$$

11.— Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ un endomorfismo diagonalizable. Si $ker(f) = \{(x,y,z) \in \mathbb{R}^3 | x+y+z=0\}$, (1,1,-1) es un autovector de f y la traza de la matriz asociada a f en una base B es 2, hallar la matriz asociada a f respecto de la base canónica.

Los vectores \vec{u} del núcleo cumplen $f(\vec{u}) = \vec{0} = 0 \cdot \vec{u}$ y por tanto son autovalores asociados al 0. Dado que

$$dim(ker(f)) = dim(\mathbb{R}^3)$$
 – número de ecuaciones = 2

, hay dos autovectores independientes asociados al 0. Además (1,1,-1) no está en el núcleo (porque no cumple la ecuación que lo define) por tanto es un autovector asociado a otro autovalor distinto.

Deducimos que los autovalores de f son:

- El 0 con multiplicidad geométrica y algebraica 2.
- $\lambda_2 \neq 0$ con multiplicidad geométrica y algebraica 1.

Además la traza de la matriz asociada al endomorfismo respecto a cualquier base coincide con la suma de autovalores. Por tanto:

$$0 + 0 + \lambda_2 = 2 \qquad \Rightarrow \qquad \lambda_2 = 2.$$

Los autovectores del núcleo son (pasamos de la implícita a paramétricas):

$$x = -y - z \implies x = -a - b, \quad y = a, \quad z = b \implies ker(f) = \mathcal{L}\{(-1, 1, 0), (-1, 0, 1)\}.$$

Conlcuimos que en la base $B = \{(-1, 1, 0), (-1, 0, 1), (1, 1, -1)\}$ de autovectores la matriz asociada es:

$$F_B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

Finalmente cambiamos a la base canónica:

$$F_C = M_{CB}F_BM_{BC} = M_{CB}F_BM_{CB}^{-1}$$

con

$$M_{CB} = \begin{pmatrix} -1 & -1 & 1\\ 1 & 0 & 1\\ 0 & 1 & -1 \end{pmatrix}$$

Operando queda:

$$F_C = \begin{pmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ -2 & -2 & -2 \end{pmatrix}.$$

12.— De una aplicación lineal $f: \mathbb{R}^3 \to \mathbb{R}^3$ se sabe:

- i) $Ker(f) = \{(x, y, z) \in \mathbb{R}^3 | x y = 0, x z = 0\}$
- ii) Los vectores (1,1,0) y (1,0,0) son autovectores asociados a un mismo autovalor.
- iii) $traza(F_C) = 4$.

Hallar la matriz asociada a f respecto de la base canónica.

Sabemos que los vectores del núcleo tienen por imagen el vector cero. A partir de las ecuaciones implícitas del núcleo calculamos los generadores del mismo. Las ecuaciones dadas son claramente independientes por no ser proporcionales:

$$x - y = 0, \quad x - z = 0.$$

Resolviendo obtenemos:

$$x=a, \quad y=a, \quad z=a$$

y por tanto $ker(f) = \mathcal{L}\{(1,1,1)\}.$

Sabemos así que f(1,1,1) = (0,0,0). Recordemos además que los vectores del núcleo son autovectores asociados al autovalor cero. Éste tendrá así multiplicidad geométrica 1.

Por otra parte los (1,1,0) y (1,0,0) son autovectores asociados a un mismo autovalor λ , que tendrá al menos multiplicidad geomérica dos.

Dado que la suma de multiplicidades geométricas no puede superar la dimensión del espacio, en nuestro caso 3, sabemos que el autovalor λ tiene exactamente multiplicidad geométrica 2 y que el endomorfismo diagonaliza.

En ese caso la traza de la matriz asociada en cualquier base coincide con la suma de autovalores contados tantas veces como indica su multiplicidad:

$$0 + \lambda + \lambda = 4$$

y por tanto $\lambda = 2$.

De todo esto concluimos que la base $B = \{(1,0,0), (1,1,0), (1,1,1)\}$ es una base de autovectores y la matriz asociada en esa base es diagonal (en la diagonal aparecen los autovalores):

$$F_B = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Terminamos con un cambio de base:

$$F_C = M_{CB}F_BM_{BC} = M_{CB}F_BM_{CB}^{-1} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 2 & 0 & -2 \\ 0 & 2 & -2 \\ 0 & 0 & 0 \end{pmatrix}$$

13.— Sea $C = {\vec{e_1}, \vec{e_2}, \vec{e_3}, \vec{e_4}}$ la base canónica de \mathbb{R}^4 y $f : \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ un endomorfismo del cuál se sabe:

$$\begin{split} f(\vec{e}_1) &= \vec{e}_1 + \vec{e}_3 \\ ker(f) &= \mathcal{L}\{\vec{e}_1 + \vec{e}_3, \vec{e}_2 - \vec{e}_4\} \\ \vec{e}_2 &+ \vec{e}_3 \text{ es autovector de } f. \\ \text{Los únicos autovalores de } f \text{ son } 0 \text{ y } 2. \end{split}$$

(i) Hallar la matriz asociada a f respecto de la base canónica.

Para hallar una matriz asociada, necesitamos saber la imagen de una base de \mathbb{R}^4 , es decir, de cuatro vectores linealmente independientes.

Sabemos que:

$$f(\vec{e}_1) = \vec{e}_1 + \vec{e}_3 \iff f(1,0,0,0) = (1,0,1,0).$$

La imagen de los vectores del núcleo es el vector nulo. Por tanto:

$$f(1,0,1,0) = (0,0,0,0), \quad f(0,1,0,-1) = (0,0,0,0).$$

Finalmente (0, 1, 1, 0) es autovector de f. Como los únicos autovalores de f son 0 y 2, o bien:

- (a)
$$f(0,1,1,0) = 0 \cdot (0,1,1,0) = (0,0,0,0)$$
, o bien

- (b)
$$f(0,1,1,0) = 2 \cdot (0,1,1,0) = (0,2,2,0)$$
.

Pero en el caso (a) (0, 1, 1, 0) estaría en el núcleo, es decir, tendría que ser combinacin lineal de (1, 0, 1, 0) y (0, 1, 0, -1). O equivalentemente la matriz:

$$\begin{pmatrix}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & -1 \\
0 & 1 & 1 & 0
\end{pmatrix}$$

tendría que tener rango 2. Pero operando:

$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 1 & 1 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

vemos que tiene rango(3). Por tanto (a) no se da y si (b):

$$f(0,1,1,0) = (0,2,2,0)$$

Si llamamos B a la base formada por los vectores sobre los cuáles tenemos información:

$$B = \{(1,0,0,0), (0,1,1,0), (1,0,1,0), (0,1,0,-1)\}$$

La matriz asociada en la base B en el espacio de partida y la canónica en el de llegada es:

$$F_{CB} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Finalmente la cambiamos de base a la base canónica:

$$F_{CC} = F_{CB}M_{BC} = F_{CB}M_{CB}^{-1}$$

donde:

$$M_{CB} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Operando resulta:

$$F_{CC} = \begin{pmatrix} 1 & 1 & -1 & 1 \\ 0 & 2 & 0 & 2 \\ 1 & 3 & -1 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

(ii) Hallar los autovalores, sus multiplicades geométricas y sus autovectores asociados.

El enunciado ya nos dice que los únicos autovalores son 0 y 2.

La multiplicidad geométrica del 0 es:

$$dim(ker(F_{CC} - 0 \cdot Id)) = dim(ker(F_{CC})) = dim(ker(f)) = 2.$$

La multplicidad geométrica del 2 es:

$$dim(ker(F_{CC} - 2 \cdot Id)) = 4 - rango(F_{CC} - 2Id) = 4 - rango\begin{pmatrix} -1 & 1 & -1 & 1 \\ 0 & 0 & 0 & 2 \\ 1 & 3 & -3 & 3 \\ 0 & 0 & 0 & -2 \end{pmatrix} = 4 - 3 = 1.$$

Finalmente los autovectores nos los da el enunciado.

Asociados al cero:

$$S_0 = Ker(f - 0 \cdot Id) = ker(f) = \mathcal{L}\{(1, 0, 1, 0), (0, 1, 0, -1)\}.$$

Asociados al dos: sabemos que es un subesapcio de dimensión 1 porque la multiplicidad geométrica es 1. Basta por tanto encontrar un autovector asociado al 2. Pero hemos visto que (0, 1, 1, 0) es tal autovector. Por tanto:

$$S_2 = \mathcal{L}\{(0, 1, 1, 0)\}.$$

- **14.** En \mathbb{R}^3 se consideran dos subespacios vectoriales suplementarios U y V con dim(U)=2. Sea $p:\mathbb{R}^3\longrightarrow\mathbb{R}^3$ la aplicación proyección sobre U paralelamente a V y P_C su matriz respecto de la base canónica.
 - (i) ¿Es P_C diagonalizable por semejanza?.

La matriz de una proyección sobre un subespacio paralelamente a otro siempre es diagonalizable por semejanza. En particular en nuestro caso como dim(U) = 2 y V es suplementario entonces $dim(V) = dim(\mathbb{R}^3) - dim(U) = 1$. Si tomamos una base $B = \{u_1, u_2, v_1\}$ donde $U = \mathcal{L}\{u_1, u_2\}$ y $V = \mathcal{L}\{v_1\}$, la matriz de la proyección en tal base es:

$$P_B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Como P_B y P_C están asociadas al mismo endomorfismo son semejantes y así P_C diagonaliza por semejanza.

(ii) Calcular los autovalores de P_C , indicando sus multiplicidades algebraicas y geométricas.

Por lo indicado en el apartado anterior, la matriz es diagonalizable y por tanto multiplicades geométricas y aglebraicas coinciden. En concreto los autovalores de P_C son los mismos que los de P_B , es decir 1 con multiplicidad algebraica y geométrica 2 y 0 con multiplicidad algebraica y geométrica 1.

(iii) Sabiendo que p(1,0,1) = (0,0,0) hallar las ecuaciones implícitas de V respecto de la base canónica.

Dado que proyectamos sobre U y paralelamente a V, los vectores de V son precisamente los que van al cero y así $(1,0,1) \in V$. Además como dim(V) = 1 necesariamente $V = \mathcal{L}\{(1,0,1)\}$. Por tanto las ecuaciones paramétricas de V respecto de la base canónica son:

$$x = \lambda, \qquad y = 0, \qquad z = \lambda$$

y las implícitas:

$$x - z = 0, \quad y = 0.$$

(iv) Sabiendo que p(1,2,3) = (-1,2,1) hallar p(-1,2,1) y la proyección de (1,2,3) sobre V paralelamente a U.

Como (-1,2,1)=p(1,2,3) entonces $(-1,2,1)\in Im(p)=U$. Ahora los vectores de U quedan fijos por la proyección y así p(-1,2,1)=(-1,2,1).

Por otra parte si p(1,2,3) = (-1,2,1) entonces:

$$(1,2,3) = \underbrace{(-1,2,1)}_{\in U} + v$$

donde v es la proyección de (1,2,3) sobre V paralelamente a U. En conclusión:

$$v = (1, 2, 3) - (-1, 2, 1) = (2, 0, 2).$$

- 15.— Dar ejemplos de matrices (si existen) en las siguientes condiciones, justificando en cada caso porque la matriz propuesta cumple lo pedido.
 - (i) Una matriz $A \in M_{2\times 2}(\mathbb{R})$ que sea triangularizable por semejanza pero no diagonalizable.

Por ejemplo $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Su polinomio característico es:

$$p(\lambda) = |A - \lambda| = \lambda^2$$
.

Por tanto tiene un único autovalor $\lambda_1 = 0$ con multiplicidad algebraica 2. Como ésta coincide con el tamaño 2 de la matriz, triangulariza por semejanza.

Para diagonalizar la multiplicidad geométrica debería de coincidir con la algebraica. Pero:

$$m.q(0) = 2 - rango(A - 0 \cdot Id) = 2 - rango(A) = 2 - 1 = 1 \neq 2.$$

No coinciden y por tanto no diagonaliza por semejanza.

(ii) Una matriz $A \in M_{2\times 2}(\mathbb{R})$ que no sea triangularizable por semejanza.

Por ejemplo $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Su polinomio característico es:

$$p(\lambda) = |A - \lambda| = det \begin{pmatrix} -\lambda & 1 \\ -1 & -\lambda \end{pmatrix} = \lambda^2 + 1.$$

El polinomio no tiene raíces reales ya que $\lambda^2 + 1$ no se anula para ningún número real λ . Por tanto la suma de multiplicidades algebraicas es cero, y no coincide con el tamaño de la matriz: no triangulariza por semejanza.

(iii) Una matriz $A \in M_{2\times 2}(\mathbb{R})$ que sea diagonalizable por semejanza pero no triangularizable.

Es imposible; si diagonaliza entonces también triangulariza ya que una matriz diagonal es un caso particular de matriz triangular.

16.— De una aplicación lineal $f: \mathbb{R}^2 \to \mathbb{R}^2$ se sabe que:

- (i) (1,1), (1,2) son autovectores de f.
- (ii) $f(2,2) \neq (0,0)$.
- (iii) $traza(F_C) = 2$.
- (iv) dim(Im(f)) = 1.

Hallar la matriz asociada a f respecto de la base canónica.

Del hecho de que (1,1), (1,2) sean autovectores de f, deducimos que:

$$f(1,1) = \lambda_1(1,1), \qquad f(1,2) = \lambda_2(1,2).$$

De $f(2,2) \neq (0,0)$ deducimos que, como $f(2,2) = 2 \cdot f(1,1)$ y $f(1,1) = \lambda_1(1,1)$, entonces $\lambda_1 \neq 0$.

De $traza(F_C) = 2$ deducimos que $\lambda_1 + \lambda_2 = 2$, ya que la traza de la matriz asociada a un endomorfismo en cualquier base coincide con la suma de autovalores.

De dim(Im(f)) = 1, por la fórmula de las dimensiones, dim(ker(f)) = 2 - dim(im(f)) = 1. Por tanto 0 es autovalor; dado que $\lambda_1 \neq 0$, entonces $\lambda_2 = 0$ y:

$$\lambda_1 = 2 - \lambda_2 = 2.$$

En definitiva:

$$f(1,1) = \lambda_1(1,1) = (2,2),$$
 $f(1,2) = \lambda_2(1,2) = (0,0).$

Los vectores $B = \{(1,1), (1,2)\}$ son base por que son dos vectores independientes en un espacio de dimensión 2. Entonces la matriz asociada F_{CB} es:

$$F_{CB} = \begin{pmatrix} 2 & 0 \\ 2 & 0 \end{pmatrix}$$

y finalmente:

$$F_{CC} = F_{CB} M_{BC} = F_{CB} M_{CB}^{-1} = \begin{pmatrix} 2 & 0 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}^{-1} = \begin{pmatrix} 2 & 0 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 4 & -2 \\ 4 & -2 \end{pmatrix}$$

17.— Razona la falsedad o veracidad de las siguientes afirmaciones:

(i) Una matriz $A \in M_{4\times 4}(\mathbb{R})$ con cuatro autovalores reales diferentes siempre es diagonalizable por semejanza.

VERDADERO. Si tiene cuatro autovalores diferentes dado que la suma de multiplicidades algebraicas no puede superar el orden de la matriz (cuatro en este caso), necesariamente todos ellos son de multiplicidad algebraica uno; la geométrica es también entonces uno. Por tanto la suma de geométricas coincide con el orden de la matriz y así ésta diagonliza por semejanza.

(ii) Una matriz cuadrada diagonalizable por semejanza siempre es diagonalizable por congruencia.

FALSO. Por ejemplo $A = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$ es diagonalizable por semejanza porque tiene dos autovalores distintos con multiplicidad algebraica y geométrica 1. Sin embargo no es diagonalizable por congruencia por no ser simétrica.

(iii) La suma de matrices diagonalizables por semejanza es diagonalizable por semejanza.

FALSO. Por ejemplo $A=\begin{pmatrix}1&1\\0&0\end{pmatrix}$ y $B=\begin{pmatrix}0&0\\0&1\end{pmatrix}$ son diagonalizables por semejanza. La primera por tener dos autovalores distintos (tantos como el orden de la matriz); la segunda ya es diagonal. Sin embargo la suma es:

$$A + B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

Que no es diagonalizable por semejanza ya que es una caja de Jordan de orden 2.

(iv) Si 0 es un autovalor de un endomorfismo f entonces éste no es inyectivo.

VERDADERO. Si 0 es un autovalor de f existe $u \neq 0$ tal que $f(u) = 0 \cdot u = 0$. Por tanto $u \in ker(f)$ y así el endomorfismo no es inyectivo.

18.— Sea $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ un endomorfismo. Si (1,2), (0,1) son autovectores de f asociados respectivamente al 1 y al 2 calcular f(2,0). ¿Es f un endormofismo diagonalizable?.

Si (1,2),(0,1) son autovectores de f asociados respectivamente al 1 y al 2 entonces:

$$f(1,2) = 1 \cdot (1,2) = (1,2)$$

 $f(0,1) = 2 \cdot (0,2) = (0,2)$

Expresamos (2,0) en la base $B = \{(1,2), (0,1)\}$:

$$M_{BC}\begin{pmatrix}2\\0\end{pmatrix} = M_{CB}^{-1}\begin{pmatrix}2\\0\end{pmatrix} = \begin{pmatrix}1&0\\2&1\end{pmatrix}^{-1}\begin{pmatrix}2\\0\end{pmatrix} = \begin{pmatrix}1&0\\-2&1\end{pmatrix}\begin{pmatrix}2\\0\end{pmatrix} = \begin{pmatrix}2\\-4\end{pmatrix}$$

Entonces:

$$f(2,0) = f((2,-4)_B) = f(2\cdot(1,2) - 4\cdot(0,1)) = 2f(1,2) - 4f(0,1) = 2\cdot(1,2) - 4\cdot(0,2) = (2,-4).$$

El endomorfismo f es diagonalizable porque tiene una base $B = \{(1,2), (0,1)\}$ de autovectores.

ÁLGEBRA

Solución a los problemas adicionales

Endomorfismos

(Curso 2019–2020)

I.— Sea A una matriz cuadrada cuyo polinomio característico es $p(\lambda) = \lambda^2 - 1$. Probar que $A^2 - Id = \Omega$.

Si el polinomio característico es $\lambda^2 - 1$, hay dos autovalores reales 1 y -1, con multiplicidad algebraica uno. Por tanto la matriz diagonaliza, es decir, existen una matriz de paso P tal que:

$$A = P^{-1} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} P.$$

Pero entonces:

$$A^{2} = P^{-1} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}^{2} P = P^{-1}IdP = P^{-1}P = Id,$$

luego

$$A^2 - Id = \Omega.$$

II.— En un espacio vectorial E de dimensión n, se consideran dos subespacios vectoriales suplementarios U y V, con dim(U) = k. Se considera el endomorfismo proyección sobre U paralelamente a V:

$$p: E \longrightarrow E$$

(i) Justificar que p diagonaliza.

Sabemos que la proyección por p de un vector de U es el propio vector; y la proyección de un vector de V es el vector nulo.

Por tanto, si escogemos una base $B=\{u_1,\ldots,u_k,v_{k+1},\ldots,v_n\}$ con $\{u_1,\ldots,u_k\}$ base de U y v_{k+1},\ldots,v_n base de V sabemos que la matriz P_B asociada a la proyección sobre U paralelamente a V en esa base es una matriz diagonal con k unos en la diagonal y n-k ceros.

Deducimos que p es diagonalizable por que la matriz asociada en la base B es diagonal.

 (ii) Hallar el polinomio característico de p, sus autovalores y los correspondientes subespacios característicos de autovectores.

La imagen (la proyección por p) de cualquier vector de U es el propio vector, es decir, si $u \in U$ entonces $p(u) = u = 1 \cdot u$. Por tanto el 1 es autovalor de p y los vectores de U son autovectores asociados al 1, y así $U \subset S_1$ y $mg(1) \ge dim(U)$.

La imagen (la proyección por p) de cualquier vector de V es el propio vector, es decir, si $v \in V$ entonces $p(v) = 0 = 0 \cdot v$. Por tanto el 0 es autovalor de p y los vectores de V son autovectores asociados al 0, y así $V \subset S_0$ y $mg(0) \ge dim(V)$.

La suma de las multiplicidades geométricas no puede superar la dimensión del espacio. Por tanto:

$$n \ge mg(1) + mg(2) \ge dim(U) + dim(V) = n$$

y deducimos que las desigualdades intermedias son igualdades y por tanto mg(1) = dim(U), mg(0) = dim(V) y $S_1 = U$, $S_0 = V$.

Como el endomorfismo diagonaliza las algebraicas coinciden con las geométricas y el polinomio característico necesariamente es:

$$(1 - \lambda)^{mg(1)}(0 - \lambda)^{mg(0)} = (1 - \lambda)^k(-\lambda)^{n-k}.$$

III.— Sea $T \in M_{n \times n}(\mathbb{R})$ una matriz tal que los elementos de cada una de sus filas suman 2011.

(i) Probar que 2011 es un autovalor de T.

Método I: Una número x es autovalor de T si es raíz del polinomio característico, es decir, si det(T-xId)=0. La matriz T tiene la propiedad de que todas sus filas suman 2011. Entonces la matriz T-2011Id tiene la propiedad de que todas sus filas suman cero. Si en dicha matriz sumamos todas las columnas a la primera, obtenemos por tanto una matriz con una columna de ceros y así con determinante cero. Deducimos que 2011 es autovalor de T.

Método II: Dado que cada una de las filas de T suman 2011 se cumple que:

$$2011 = t_{i,1} + t_{i,2} + \ldots + t_{i,2011} = (t_{i,1} \quad t_{i,2} \quad \ldots \quad t_{i,2011}) \begin{pmatrix} 1\\1\\\vdots\\1 \end{pmatrix}.$$

para cualquier $i \in N$, $1 \le i \le 2011$ y por tanto si tomamos $u = (1, 1, ..., 1)^t$ se cumple que:

$$Tu = 2011u$$
.

Deducimos que 2011 es autovalor de T y u es un autovector asociado al mismo.

(ii) Hallar un vector $u \in \mathbb{R}^n$ tal que Tu = 2011u

Contestado en el método II del apartado anterior.

(iii) Probar que u es también autovector de T^m , para cualquier m natural.

Se tiene que:

$$Tu = 2011u$$

 $T^2u = T(Tu) = T(2011u) = 2011Tu = 2011 \cdot 2011u = 2011^2u$
 $T^3u = T(T^2u) = T(2011^2u) = 2011^2Tu = 2011^2 \cdot 2011u = 2011^3u$

Parece que se cumple entonces que $T^m u = 2011^m u$. Lo comprobamos por inducción:

- Para m=1 hemos visto que es cierto: $T^1u=2011^1u$.
- Suponemos cierto para m-1, es decir que $T^{m-1}=2011^{m-1}u$ y lo probamos para m:

$$T^m u = T(T^{m-1}u) = T(2011^{m-1}u) = 2011^{m-1}Tu = 2011^{m-1} \cdot 2011u = 2011^m u.$$

(iv) Probar que la suma de los elementos de cada una de las filas de T^m es una constante K_m y calcular su valor en función de m.

Hemos visto que:

$$T^m u = 2011^m u$$

siendo $u=(1,1,\ldots,1)^t$. Por tanto cada una de las filas de T^m suma el valor constante $2011^m=K_m$.

IV.— Dada la matriz:

$$A = \begin{pmatrix} 1 & 1 & -1 & 0 & -1 \\ 0 & 2 & -1 & 0 & -1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & -1 & 2 \end{pmatrix}$$

(a) Calcular sus autovalores y autovectores.

Los autovalores son las raíces del polinomio característico. Este es:

$$det(A - \lambda Id) = (1 - \lambda)^3 (2 - \lambda)^2.$$

Las raíces son por tanto:

 $\lambda_1 = 1$ con multiplicidad algebraica 3.

 $\lambda_2 = 2$ con multiplicdidad algebracia 2.

Los autovectores asociados a cada autovalor λ son los vectores de los subespacios $ker(A - \lambda Id)$.

Para $\lambda_1 = 1$ tenemos:

$$ker(A-Id) = \{(x, y, z, t, u) \in \mathbb{R}^5 | (A-Id) \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \}$$

Operando:

$$\begin{pmatrix} 0 & 1 & -1 & 0 & -1 \\ 0 & 1 & -1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & -1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ t \\ u \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

quedan las ecuaciones independientes:

$$y-z-u=0,$$
 $-z=0,$ $-z-t+u=0.$

Por tanto el espacio de vectores característico tiene dimensión 5-3=2. Una base del mismo vendrá dada por dos autovectores independientes cumpliendo estas ecuaciones:

$$S_1 = \mathcal{L}\{(1,0,0,0,0), (0,1,0,1,1)\}$$

Para $\lambda_1 = 2$ tenemos:

$$ker(A-2Id) = \{(x,y,z,t,u) \in \mathbb{R}^5 | (A-2Id) \begin{pmatrix} x \\ y \\ z \\ t \\ u \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \}$$

Operando:

$$\begin{pmatrix} -1 & 1 & -1 & 0 & -1 \\ 0 & 0 & -1 & 0 & -1 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & -1 & 0 \\ 0 & 0 & -1 & -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ t \\ u \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

y obtenemos las ecuaciones independientes:

$$-x + y - z - u = 0$$
, $-z - u = 0$, $-z - t = 0$.

Por tanto el espacio de vectores característicos tiene dimensión 5-4=1. Una base del mismo vendrá dada por un autovector cumpliendo estas ecuaciones

$$\{(1,1,0,0,0)\}$$

(b) ¿Es diagonalizable y/o triangularizable por semejanza?.

Es triangularizable porque la suma de las multiplicidades algebraicas coincide con la dimensión de la matriz. No es diagonalizable, porque las multiplicidades geométricas no coinciden con las algebraicas:

$$m.g.(1) = dim(ker(A - Id)) = 2 \neq 3 = m.a.(1)$$

$$m.g.(2) = dim(ker(A - 2Id)) = 1 \neq 2 = m.a.(2)$$

(c) Calcular, si es posible, una forma de Jordan J y una matriz inversible P tal que $J = PAP^{-1}$.

Para cada autovalor, la multiplicidad algebraica nos indica la dimensión total de las cajas de Jordan asociadas al mismo; la geométrica el número de cajas de Jordan.

Para $\lambda_1 = 1$ tenemos m.a(1) = 3 y m.g(1) = 2. Por tanto la única posibilidad es dos cajas de Jordan de tamaños respectivamente 2 y 1.

Para $\lambda_2 = 2$ tenemos m.a(2) = 2 y m.g(2) = 1. Por tanto la única posibilidad es una caja de Jordan de tamaño 2.

Una forma de Jordan semejante a la matriz dada será por tanto:

$$J = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 2 \end{pmatrix}.$$

Calculemos la matriz de paso P. Comenzamos con los vectores relativos al autovalor 1. Buscamos vectores u_2, v_1 según el siguiente esquema:

$$Ker(A-Id)$$
 $Ker(A-Id)^2$ $u_2(A-Id)$ u_2

con $u_2(A-Id) \neq 0$ y v_1 linealmente independiente con él. Los vectores de $Ker(A-Id)^2$ son:

obteniendo las ecuaciones:

$$y + t - 2u = 0$$
, $-t + u = 0$.

Escogemos el vector cumpliendo esas condiciones $u_2 = (0,0,1,0,0)$ de manera que $(A-Id)u_2^t = (-1,-1,0,-1,-1)^t$.

El vector v_1 está en el ker(A-Id), que ya hemos calculado previamente. Tomamos $v_1=(1,0,0,0,0)$.

Ahora trabajamos con el autovalor 2. Buscamos un vector w_2 según el siguiente esquema:

$$Ker(A-2Id)$$
 $Ker(A-2Id)^2$ $(A-2Id)w_2$ w_2

con $(A-2Id)w_2 \neq 0$. Los vectores de $Ker(A-2Id)^2$ son:

$$(A-2Id)^2 \begin{pmatrix} x \\ y \\ z \\ t \\ u \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \iff \begin{pmatrix} 1 & -1 & 2 & 1 & 0 \\ 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 2 & 0 \\ 0 & 0 & 2 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ t \\ u \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

obteniendo las ecuaciones:

$$x - y + 2z + t = 0$$
, $2z + t = 0$, $z = 0$.

Escogemos el vector cumpliendo esas condiciones $w_2 = (0,0,0,0,1)$ de manera que $(A-2Id)w_2 = (-1,-1,0,0,0)$.

En definitiva la matriz de paso queda:

$$P = \begin{pmatrix} -1 & 0 & 1 & -1 & 0 \\ -1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

V.— Consideramos la matriz

$$A = \begin{pmatrix} -1 & -1 & -1 & -1 \\ 0 & -1 & 0 & 0 \\ 1 & 1 & 1 & 2 \\ 0 & 1 & 0 & -1 \end{pmatrix}.$$

(b) Hallar la forma de Jordan J de A y una matriz de paso P tal que $J = P^{-1}AP$.

Comenzamos estudiando las cajas de Jordan asociadas al autovalor $\lambda_1 = 0$.

Se tiene:

$$dim(ker(A - \lambda_1 Id)) = 4 - rango(A) = 4 - 3 = 1;$$

Por tanto hay una única caja de Jordan asociada al autovalor 0. Para buscar la base en la que se obtiene tenemos que encontrar dos vectores \bar{x}_1, \bar{x}_2 de la siguiente forma:

$$\begin{array}{ccc} V_1 & \subset & V_2 \\ \bar{x}_1 = A\bar{x}_2 & & \bar{x}_2 \end{array}$$

Donde

$$V_i = ker((A - \lambda_1 Id)^i) = ker(A^i),$$
 para $i = 1, 2,$

y el vector \bar{x}_2 debe de ser un vector de V_2 , de manera que al calcular $\bar{x}_1 = A\bar{x}_2$ no obtengamos el vector nulo.

Se tiene:

$$A^2 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & -2 & 0 & 1 \end{pmatrix}$$

у

$$V_2 = \{(x,y,z,t) \in \mathbb{R}^4 | A^2(x,y,z,t)^t = \bar{0}\} = \{(x,y,z,y) \in \mathbb{R}^4 | y=t=0\} = \mathcal{L}\{(1,0,0,0),(0,0,1,0)\}.$$

Tomamos $\bar{x}_2 = (1, 0, 0, 0)$ y obtenemos $\bar{x}_1 = A\bar{x}_2 = (-1, 0, 1, 0)$.

Ahora estudiamos las cajas de Jordan asociadas al autovalor $\lambda_2 = -1$.

Se tiene:

$$dim(ker(A - \lambda_2 Id)) = 4 - rango(A + Id) = 4 - rango\begin{pmatrix} 0 & -1 & -1 & -1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 2 & 2 \\ 0 & 1 & 0 & 0 \end{pmatrix} = 4 - 3 = 1;$$

Por tanto hay una única caja de Jordan asociada al autovalor -1. De nuevo, para buscar la base en la que se obtiene tenemos que encontrar dos vectores \bar{y}_1, \bar{y}_2 de la siguiente forma:

$$\begin{array}{ccc} U_1 & \subset & U_2 \\ \bar{y}_1 = (A + Id)\bar{y}_2 & & \bar{y}_2 \end{array}$$

Donde

$$U_i = ker((A - \lambda_2 Id)^i) = ker((A + Id)^i), \quad \text{para } i = 1, 2,$$

y el vector \bar{y}_2 debe de ser un vector de U_2 , de manera que al calcular $\bar{y}_1 = (A + Id)\bar{y}_2$ no obtengamos el vector nulo.

Ahora:

$$(A+Id)^2 = \begin{pmatrix} -1 & -2 & -2 & -2\\ 0 & 0 & 0 & 0\\ 2 & 3 & 3 & 3\\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$U_2 = \{(x, y, z, t) \in \mathbb{R}^4 | (A + Id)^2(x, y, z, t)^t = \overline{0}\} = \{(x, y, z, y) \in \mathbb{R}^4 | \begin{cases} x + 2y + 2z + 2t = 0 \\ 2x + 3y + 3z + 3t = 0 \end{cases} \} = \mathcal{L}\{(0, 1, -1, 0), (0, 1, 0, -1)\}.$$

Escogemos $\bar{y}_2 = (0, 1, -1, 0), \ \bar{y}_1 = (A + Id)\bar{y}_2 = (0, 0, -1, 1)^t.$

En definitiva la forma de Jordan y la matriz de paso correspondiente son:

$$J = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1 \end{pmatrix}; \qquad P = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & -1 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

(d) Calcular A^{10} .

Método I: Teniendo en cuenta que $J = P^{-1}AP$ se tiene:

$$A^{10} = PJ^{10}P^{-1}.$$

Calculemos J^{10} :

Además $C^k = \Omega$ si $k \geq 2$. Entonces:

Por tanto:

$$A^{10} = PJ^{10}P^{-1} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 9 & 0 & -1 \\ 0 & -10 & 0 & 1 \end{pmatrix}.$$

Método II: Calculamos las potencias bajas de A:

$$A^{2} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & -2 & 0 & 1 \end{pmatrix}; \quad A^{3} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & -2 & 0 & 1 \\ 0 & 3 & 0 & -1 \end{pmatrix}; \quad A^{4} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 3 & 0 & -1 \\ 0 & -4 & 0 & 1 \end{pmatrix}.$$

Intuimos que la potencia n-sima de A puede ser

$$A^{n} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & (-1)^{n} & 0 & 0 \\ 0 & (-1)^{n}(n-1) & 0 & (-1)^{n+1} \\ 0 & (-1)^{n+1}n & 0 & (-1)^{n} \end{pmatrix}.$$

Probemos por inducción que esta fórmula es cierta para $n \geq 2$:

- Para n=2 hemos visto que se cumple.

- Supongámosla cierta para n-1 y probémosla para n:

$$A^{n} = A \cdot A^{n-1} = \begin{pmatrix} -1 & -1 & -1 & -1 \\ 0 & -1 & 0 & 0 \\ 1 & 1 & 1 & 2 \\ 0 & 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & (-1)^{n-1} & 0 & 0 \\ 0 & (-1)^{n-1}(n-2) & 0 & (-1)^{n} \\ 0 & (-1)^{n}(n-1) & 0 & (-1)^{n-1} \end{pmatrix}.$$

Las únicas operaciones no directas aparecen en las posiciones (3,2) y (4,2). Tenemos en cuenta que:

$$(-1)(-1)^{(n-1)}(n-2) + (-1)^n = (-1)^n(n-2) + (-1)^n = (-1)^n(n-2+1) = (-1)^n(n-1).$$

$$(-1)(-1)^n(n-1) + (-1)^{(n-1)} = (-1)^{(n+1)}(n-1) + (-1)^{(n+1)} = (-1)^{(n+1)}(n-1+1) = (-1)^{(n+1)}n.$$

y obtenemos:

$$A^{n} = A \cdot A^{n-1} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & (-1)^{n} & 0 & 0 \\ 0 & (-1)^{n}(n-1) & 0 & (-1)^{n+1} \\ 0 & (-1)^{n+1}n & 0 & (-1)^{n} \end{pmatrix}.$$

Por tanto la potencia pedida será:

$$A^{10} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 9 & 0 & -1 \\ 0 & -10 & 0 & 1 \end{pmatrix}.$$

VI.— Dada la matriz:

$$A = \begin{pmatrix} -1 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 \end{pmatrix}.$$

a) Hallar los autovalores y autovectores de A.

El polinomio característico es:

$$p(\lambda) = det(A - \lambda Id) = \lambda^4$$
.

Por tanto hay un único autovalor $\lambda_1=0$ con multiplicidad algebraica 4.

Calculamos los autovectores:

$$(A - 0 \cdot Id) \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = 0 \iff -x + y = 0,$$

y así:

$$S_0 = \mathcal{L}\{(1, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)\}.$$

b) Calcular una forma de Jordan asociada a A, indicando la correspondiente matriz de paso P.

Del apartado anterior deducimos que la matriz es triangularizable por semejanza ya que todos sus autovalores son reales. Además como la multiplicidad geométrica (el número de autovectores independientes) de su único autovalor es 3, hay 3 cajas de Jordan de tamaño total 4. La forma de Jordan será:

Para hallar la matriz de paso P buscamos cuatro vectores según el siguiente esquema:

de manera que los tres vectores u_1, v_1, w_1 sean independientes. Tenemos que:

$$A^2 = Id.$$

Por tanto $ker(A - 0 \cdot Id)^2 = \mathbb{R}^4$ y u_2 puede ser cualquier vector verificando que $u_2A \neq (0,0,0,0)$. Tomamos $u_2 = (1,0,0,0)$ y $u_1 = Au_2 = (-1,-1,-1,-1)$.

Finalmente los vectores v_1, w_1 son otros dos autovectores independientes de u_1 . Por ejemplo:

$$v_1 = (0, 0, 1, 0), \quad w_1 = (0, 0, 0, 1).$$

La matriz de paso nos queda:

$$P = \begin{pmatrix} -1 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix}.$$

c) Calcular $(A + Id)^{2010}$.

Como A e Id conmutan podemos usar la fórmula del binomio de Newton:

$$(A+Id)^{2010} = \sum_{n=0}^{2010} {2010 \choose n} A^n.$$

Tenemos en cuenta además que $A^2 = 0$ y por tanto $A^n = 0$ para n > 1. Así nos queda:

$$(A+Id)^{2010} = Id + 2010A = \begin{pmatrix} -2009 & 2010 & 0 & 0 \\ -2010 & 2011 & 0 & 0 \\ -2010 & 2010 & 0 & 0 \\ -2010 & 2010 & 1 & 1 \end{pmatrix}.$$

VII.— Se considera la matriz:

$$A = \begin{pmatrix} 1 & -1 & a \\ 0 & 1 & 0 \\ 0 & -a & a+1 \end{pmatrix}, \qquad a \in \mathbb{R}.$$

(a) Determinar los valores de a para las cuales la matriz es triangularizable. Indicar cuando es además diagonalizable.

La matriz A es triangularizable cuando todos sus autovalores son reales. Calculemos su polinomio característico:

$$|A - \lambda I| = (1 - \lambda)^2 (a + 1 - \lambda)$$

Vemos que en cualquier caso todos los autovalores son reales luego SIEMPRE ES TRIANGULARIZABLE.

La matriz A será además diagonalizable cuando las multiplicidades aritméticas y geométricas de los autovalores coincidan. Los autovalores son 1 y a+1. Pero ambos pueden coincidir (si a+1=1). En cualquier caso calculemos la multiplicidad geométrica del autovalor 1 en función de a:

$$m_g(1) = \dim(Ker(A - Id)) = 3 - rg \begin{pmatrix} 0 & -1 & a \\ 0 & 0 & 0 \\ 0 & -a & a \end{pmatrix} = 3 - rg \begin{pmatrix} 0 & a - 1 & a \\ 0 & 0 & 0 \\ 0 & 0 & a \end{pmatrix}$$

Luego:

$$m_g(1) = \begin{cases} 1 \text{ si } a \neq 0, 1. \\ \\ 2 \text{ si } a = 0 \text{ ó } a = 1. \end{cases}$$

En consecuencia, distinguimos los siguientes casos:

- Si a=0 hay un único autovalor $\lambda_1=1$ con multiplicidad algebraica 3 y geométrica 2. Por tanto la matriz A NO diagonaliza.
- Si a=1 hay dos autovalores: $\lambda_1=1$ con multiplicidad algebraica 2 y geométrica 2, y $\lambda_2=2$ con multiplicidad algebraica 1. Dado que la geométrica al menos siempre vale 1 y no puede ser superior a la algebraica, deducimos que A SI diagonaliza.
- Si $a \neq 0, 1$, hay dos autovalores: $\lambda_1 = 1$ con multiplicidad algebraica 2 y geométrica 1, y $\lambda_2 = a + 1$ con multiplicidad algebraica 1. Por tanto la matriz A NO diagonaliza.
- (b) Para los valores de a para los cuales A es triangularizable pero no diagonalizable, calcular la forma canónica de Jordan J de A y una matriz P tal que J = PAP⁻¹.
 - Supongamos que a = 0.

Entonces hay un único autovalor $\lambda_1 = 1$. La multiplicidad geométrica es 2. Por tanto hay dos cajas de Jordan y la matriz J será:

$$J = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Para calcular la matriz P pedida necesitamos hallar la base en la que se obtiene J. Buscamos vectores:

$$\bar{u}_1$$
 \bar{u}_2 \bar{v}_1

donde $\bar{u}_2 \in Ker(A-Id)^2$, pero $\bar{u}_2 \notin Ker(A-Id)$; $\bar{u}_1 = (A-Id)\bar{u}_2$ y $\bar{v}_1 \in Ker(A-Id)$ y es independiente de \bar{u}_1 .

Hagamos los cálculos:

$$A - Id = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \quad (A - Id)^2 = \Omega.$$

Entonces:

$$Ker(A-Id) = \{(x,y,z)/y = 0\}; \qquad Ker(A-Id)^2 = \mathbb{R}^3.$$

Podemos tomar $\bar{u}_2 = (0, 1, 0), \bar{u}_1 = (-1, 0, 0), \bar{v}_1 = (0, 0, 1).$ La matriz P pedida queda:

$$P = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- Supongamos $a \neq 0, 1$.

Entonces hay dos autovalores $\lambda_1 = 1$ con multiplicidad algebraica 2 y geométrica 1, y $\lambda_2 = a + 1$ con multiplicidad 1. La forma de Jordan es:

$$J = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & a+1 \end{pmatrix}$$

Para calcular la matriz P pedida necesitamos hallar la base en la que se obtiene J. Primero calculamos los vectores relativos al autovalor 1:

$$\bar{u}_1$$
 \bar{u}_2

donde $\bar{u}_2 \in Ker(A-Id)^2$, pero $\bar{u}_2 \notin Ker(A-Id)$; $\bar{u}_1 = (A-Id)\bar{u}_2$.

Hagamos los cálculos:

$$A - Id = \begin{pmatrix} 0 & -1 & a \\ 0 & 0 & 0 \\ 0 & -a & a \end{pmatrix}; \quad (A - Id)^2 = \begin{pmatrix} 0 & -a^2 & a^2 \\ 0 & 0 & 0 \\ 0 & -a^2 & a^2 \end{pmatrix}.$$

Entonces:

$$Ker(A - Id) = \{(x, y, z)/y = z = 0\};$$
 $Ker(A - Id)^2 = \{(x, y, z)/-y + z = 0\}$

Escogemos $\bar{u}_2 = (0, 1, 1)$ y $\bar{u}_1 = (a - 1, 0, 0)$.

Ahora completamos la base con un vector $\bar{v}_1 \in Ker(A - (a+1)Id)$:

$$A - (a+1)Id = \begin{pmatrix} -a & -1 & 0 \\ 0 & -a & 0 \\ 0 & -a & 0 \end{pmatrix},$$

luego

$$Ker(A - (a+1)Id) = \{(x, y, z)/y = 0, x = z\}.$$

Escogemos $\bar{v}_1 = (1, 0, 1)$.

La matriz P queda

$$P = \begin{pmatrix} a - 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

(c) Cuando a = -1, calcular A^n para cualquier $n \in \mathbb{N}$.

Método I: Utilizamos que:

$$J = P^{-1}AP \iff A = PJP^{-1}.$$

con las matrices J y P que hemos obtenido en el apartado anterior:

$$J = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \qquad P = \begin{pmatrix} -2 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}.$$

Por tanto:

$$A^{n} = PJ^{n}P^{-1} = P\begin{pmatrix} 1 & n & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} P^{-1} = \begin{pmatrix} 1 & -2n+1 & -1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Método II: Calculamos las primeras potencias de A:

$$A = \begin{pmatrix} 1 & -1 & -1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}; \quad A^2 = \begin{pmatrix} 1 & -3 & -1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}; \quad A^3 = \begin{pmatrix} 1 & -5 & -1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

Parece cumplirse que, en general:

$$A^n = \begin{pmatrix} 1 & -2n+1 & -1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Lo probamos por inducción:

- Para n = 1 se cumple:
- Lo suponemos cierto para n-1 y lo comprobamos para n:

$$A^{n} = A^{n-1}A = \begin{pmatrix} 1 & -2(n-1) + 1 & -1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 & -1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & -2n + 1 & -1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

(Examen final, junio 2005)

VIII.— Dada la matriz

$$A = \begin{pmatrix} -a & 0 & -1 & a-1 \\ a & 1 & 0 & -a \\ 1+2a & 0 & 2 & 1-2a \\ -1-a & 0 & -1 & a \end{pmatrix}$$

donde a es un parámetro real, se pide:

- a) En función de $a \in \mathbb{R}$, estudiar si A es triangularizable y si es diagonalizable (por semejanza).
- b) Para a=1, encontrar una forma de Jordan asociada a A y la correspondiente matriz de paso. Solución.
- (a) Calculamos el polinomio característico

$$|A - \lambda I| = \begin{vmatrix} -a - \lambda & 0 & -1 & a - 1 \\ a & 1 - \lambda & 0 & -a \\ 1 + 2a & 0 & 2 - \lambda & 1 - 2a \\ -1 - a & 0 & -1 & a - \lambda \end{vmatrix} = (1 - \lambda) \begin{vmatrix} -a - \lambda & -1 & a - 1 \\ 1 + 2a & 2 - \lambda & 1 - 2a \\ -1 - a & -1 & a - \lambda \end{vmatrix}$$
$$= (1 - \lambda) \begin{vmatrix} -1 - \lambda & -1 & a - 1 \\ 2 & 2 - \lambda & 1 - 2a \\ -1 - \lambda & -1 & a - \lambda \end{vmatrix} = (1 - \lambda) \begin{vmatrix} 0 & 0 & \lambda - 1 \\ 2 & 2 - \lambda & 1 - 2a \\ -1 - \lambda & -1 & a - \lambda \end{vmatrix}$$
$$= -(1 - \lambda)^2 \begin{vmatrix} 2 & 2 - \lambda \\ -1 - \lambda & -1 \end{vmatrix} = -(1 - \lambda)^2 (\lambda - \lambda^2) = \lambda(\lambda - 1)^3$$

luego, independientemente de a, los autovalores de A son 0 (con multiplicidad algebraica 1) y 1 (con multiplicidad algebraica 3). En particular A siempre será triangularizable: la suma de las multiplicidades algebraicas coincide con el tamaño de la matriz. Para analizar si A es diagonalizable tenemos que calcular las multiplicidades geométricas. Como $\lambda=0$ es un autovalor simple, su multiplicidad geométrica es necesariamente 1. En cuanto a $\lambda=1$, se tiene

$$d(1) = 4 - \operatorname{rg}(A - 1 \cdot I) = 4 - \operatorname{rg} \begin{pmatrix} -a - 1 & 0 & -1 & a - 1 \\ a & 0 & 0 & -a \\ 1 + 2a & 0 & 1 & 1 - 2a \\ -1 - a & 0 & -1 & a - 1 \end{pmatrix}$$
$$= 4 - \operatorname{rg} \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -a \\ 2 & 0 & 1 & 1 - 2a \\ -2 & 0 & -1 & a - 1 \end{pmatrix} = 4 - \operatorname{rg} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -a \\ 0 & 0 & 1 & 1 - 2a \\ 0 & 0 & -1 & a - 1 \end{pmatrix}$$

Claramente d(1) = 4 - 1 = 3 si a = 0 y d(1) = 4 - 2 = 2 en otro caso. Por lo tanto, la matriz A es diagonalizable (las multiplicidades geométricas suman 4) si y sólo si a = 0.

(b) Para a = 1 tenemos la matriz

$$A = \begin{pmatrix} -1 & 0 & -1 & 0 \\ 1 & 1 & 0 & -1 \\ 3 & 0 & 2 & -1 \\ -2 & 0 & -1 & 1 \end{pmatrix}$$

de la que, por el apartado anterior, sabemos que es triangularizable no diagonalizable: sus autovalores son $\lambda=0$ (con multiplicidades m(0)=d(0)=1) y $\lambda=1$ (con multiplicidades $m(1)=3,\ d(1)=2$). La base en la que obtendremos la forma de Jordan J asociada a A (las filas de la matriz de paso P tal que $J=PAP^{-1}$) contendrá un autovector de $\lambda=0$ y tres vectores obtenidos a partir de $\lambda=1$, de los cuales dos serán autovectores. El esquema es como sigue:

$$\operatorname{Ker}(A - 0 \cdot I)$$
 $\operatorname{Ker}(A - 1 \cdot I)$ $\operatorname{Ker}(A - 1 \cdot I)^2$

*

*

*

*

*

Con la base de Jordan $\{\bar{v}_1, \bar{v}_2, \bar{v}_3, \bar{v}_4\}$ ordenada como en el esquema (leyendo por líneas, de izquierda a derecha) la matriz de Jordan asociada es

$$J = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

 \bar{v}_1 es un autovector de $\lambda=0$, luego una solución del sistema $A(x,y,z,t)^t=0$:

$$\begin{pmatrix} -1 & 0 & -1 & 0 \\ 1 & 1 & 0 & -1 \\ 3 & 0 & 2 & -1 \\ -2 & 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Tomamos por ejemplo $\bar{v}_1 = (1, 0, -1, 1)$.

 \bar{v}_3 es un vector de Ker $(A-I)^2$ que no pertenezca a Ker(A-I); \bar{v}_2 se obtiene como $(A-I)\bar{v}_3$, y \bar{v}_4 ha de formar una base de Ker(A-I) junto a \bar{v}_2 . Las ecuaciones de Ker(A-I) son

$$\begin{pmatrix} -2 & 0 & -1 & 0 \\ 1 & 0 & 0 & -1 \\ 3 & 0 & 1 & -1 \\ -2 & 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

y las de $Ker(A-I)^2$,

$$\begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & -1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Una solución del segundo sistema que no lo sea del primero es, por ejemplo, $\bar{v}_3 = (1,0,-1,0)$. Así $\bar{v}_2 = (1,0,-1,0)(A-I) = (-1,1,2,-1)$ y como \bar{v}_4 podemos tomar (0,1,0,0), que es un autovector independiente con \bar{v}_2 . La matriz de paso P queda finalmente

$$P = \begin{pmatrix} 1 & -1 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ -1 & 2 & -1 & 0 \\ 1 & -1 & 0 & 0 \end{pmatrix}$$

IX.— Sea la matriz:

$$A = \begin{pmatrix} -3 & -2 & 0 & a \\ 4 & 3 & 0 & 0 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 4 & 3 \end{pmatrix}$$

a) Estudiar en función de los valores de a si es triangularizable y/o diagonalizable.

Calculamos el polinomio característico:

$$det(A - \lambda Id) = (\lambda^2 - 1)(\lambda^2 - 2\lambda + 1) = (\lambda - 1)^3(\lambda + 1).$$

Por tanto los autovalores son:

- $\lambda_1 = 1$ con multiplicidad algebraica $m(\lambda_1) = 3$.
- $\lambda_2 = -1$ con multiplicidad algebraica $m(\lambda_2) = 1$.

Como la suma de ambas multiplicidades coincide con la dimensión de la matriz, ésta es siempre triangularizable por semejanza.

Para ver si además deiagonaliza hay que comprobar si las multiplicidades geométricas coinciden con las algebraicas. Para λ_2 es inmediato, porque:

$$1 \le d(\lambda_2) \le m(\lambda_2) = 1 \implies d(\lambda_2) = m(\lambda_2).$$

Para el otro autovalor tenemos:

$$d(\lambda_1) = 4 - rango(A - Id) = 4 - rango\begin{pmatrix} -4 & -2 & 0 & a \\ 4 & 2 & 0 & 0 \\ 0 & 0 & -2 & -1 \\ 0 & 0 & 4 & 2 \end{pmatrix}.$$

Ahora:

$$\begin{pmatrix} -4 & -2 & 0 & a \\ 4 & 2 & 0 & 0 \\ 0 & 0 & -2 & -1 \\ 0 & 0 & 4 & 2 \end{pmatrix} \longrightarrow \begin{pmatrix} 0 & 0 & 0 & a \\ 4 & 2 & 0 & 0 \\ 0 & 0 & -2 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Por lo que deducimos:

- Si a=0, entonces $d(\lambda_1)=4-rango(A-\lambda Id)=4-2=2$.
- Si $a \neq 0$, entonces $d(\lambda_1) = 4 rango(A \lambda Id) = 4 3 = 1$.

En cualquier caso nunca coincide con la multiplicidad algebraica. Por lo que nunca diagonaliza.

 b) Cuando sea posible, calcular la correspondiente matriz diagonal o de Jordan en función del parámetro a.

Por lo que hemos visto antes.

- Si $a \neq 0$, entonces hay una caja de Jordan dimensión 3 asociada al autovalor 1 y otra de dimensión 1 asociada a -1. La forma de Jordan es:

$$J = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}.$$

- Si a=0, entonces hay dos cajas de Jordan cuyas dimensiones suman 3 asociadas al autovalor 1 y otra de dimensión 1 asociada a -1. La forma de Jordan es:

$$J = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}.$$

c) Para a=0 calcular los autovectores de A. Además hallar una matriz inversible P tal que $J=PAP^{-1}$ siendo J la forma de Jordan.

Los autovectores asociados a 1 cumplen:

$$(A-Id)\begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \quad \Rightarrow \quad \begin{pmatrix} -4 & -2 & 0 & 0 \\ 4 & 2 & 0 & 0 \\ 0 & 0 & -2 & -1 \\ 0 & 0 & 4 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

Quedan las ecuaciones independientes:

$$-4x - 2y = 0,$$
 $y = -2x.$

Por tanto los autovalores asociados a 1 son los del subespacio:

$$S_1 = \mathcal{L}\{(1, -2, 0, 0), (0, 0, 1, -2)\}.$$

Los autovectores asociados a -1 cumplen:

$$(A+Id)\begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \quad \Rightarrow \quad \begin{pmatrix} -2 & -2 & 0 & 0 \\ 4 & 4 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 4 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

Quedan las ecuaciones independientes:

$$-2x - 2y = 0$$
, $t = 0$, $4z + 4t = 0$.

Por tanto los autovalores asociados a -1 son los del subespacio:

$$S_{-1} = \mathcal{L}\{(1, -1, 0, 0)\}.$$

Para hallar la matriz de paso ya vimos que hay dos cajas de Jordan de dimensiones 1 y 2 asociadas al autvalor 1. Entonces tenemos que encontrar vectores \bar{u}_2 y \bar{v}_1 encajando en el esquema:

$$Ker(A-Id)$$
 $Ker(A-Id)^2$
 $(A-Id)\bar{u}_2$ \bar{u}_2
 \bar{v}_1

con \bar{v}_1 y $(A - Id)\bar{u}_2$ independientes.

Tenemos:

de manera que:

$$(A - Id)^2 \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \iff y + 2x = 0.$$

Tomamos $\bar{u}_2 = (0,0,0,1)$, $(A - Id)\bar{u}_2^t = (0,0,-1,2)^t$ y $\bar{v}_1 = (1,-2,0,0)$. Por otra parte ya vimos que un autovector asociado a -1 es (1,-1,0,0).

En definitiva la matriz de paso P queda:

$$P = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & -2 & -1 \\ -1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \end{pmatrix}.$$

X.— Sea A una matriz cuadrada. Supongamos que $(\lambda - 2)^{12}$ es el polinomio característico de A:

$$m.geométrica(2) = 6$$
, $rango((A - 2Id)^2) = 2$, $dim(ker((A - 2Id)^3) = 11$.

 $\dot{\delta}Es~A~triangularizable~por~semejanza?~En~caso~afirmativo~calcular~una~forma~de~Jordan~semejante~a~A~.$

Como $(\lambda - 2)^{12}$ es el polinomio característico y el grado del mismo coincide con la dimensión de la matriz, sabemos que $A \in M_{12 \times 12}$. Además tiene un úncio autovalor con multiplicidad algebraica 12 luego triangulariza.

Como la multiplicidad geométrica es 6 hay seis cajas de Jordan.

Además:

- i) $dim(ker(A-2Id)^2) dim(ker(A-Id)) = 12 2 (12-6) = 4$ luego hay cuatro cajas de tamaño mayor o igual que 2.
- ii) $dim(ker(A-2Id)^3) dim(ker(A-Id)^2) = 11 (12-2) = 1$ luego hay una caja de tamaño mayor o igual que 3.

En total tenemos entonces 2 cajas de tamaño 1, 3 cajas de tamaño 2 y 1 caja de tamaño mayor o igual que 3. Como en total todas ellas tienen dimensión 12 la última necesariamente es de tamaño:

$$12 - (2 \cdot 1 + 3 \cdot 2) = 4.$$

Por tanto una forma de Jordan semejante a A es:

XI.— Encontrar una matriz A que cumpla:

- (1) $\dim(\operatorname{Ker} A) = 1$
- (2) $\lambda = 1$ es un autovalor cuya multiplicidad algebraica es 4.
- (3) $\lambda = 2$ es un autovalor cuya multiplicidad algebraica es 3.
- (4) rg(A I) = 6, $rg(A I)^2 = 4$
- (5) rg(A-2I) = 7, $rg(A-2I)^3 = 5$

Buscaremos una forma de Jordan de dimensión n que cumpla estas condiciones. Interpretemos cada una de ellas:

- La primera nos dice que el autovalor 0 tiene multiplicidad geométrica $dim(Ker(A-0\cdot I))=1$. Por tanto la algebraica es al menos 1.
- La segunda y tercera, nos da directamente la multiplicidad algebraica de los autovalores 1 y 2.

De estas tres conidicones deducimos que la dimensión de la matriz ha de ser como mínimo 8, es decir, $n \ge 1 + 3 + 4 = 8$.

Ahora, para el autovalor 1 tenemos:

$$rg(A-I)=6 \Rightarrow dim(ker(A-I))=n-6 \Rightarrow dimV_1=n-6 \text{ (n° de cajas de Jordan)}$$

 $rg(A-I)^2=4 \Rightarrow dim(ker(A-I)^2)=n-4 \Rightarrow dimV_2=n-4$

Como $dim(V_i) \le multiplicidad$ algebraica= 4. Deducimos que $n \le 8$ y por tanto n es exactamente 8. Ahora vemos que tenemos la siguiente configuración para el autovalor 1:

* *

es decir, dos cajas de Jordan de dimensión 2.

Ahora, para el autovalor 2 tenemos:

$$rg(A-2I) = 7 \implies dim(ker(A-2I)) = 8-7 = 1 \implies dimV_1 = 1 \text{ (n}^o \text{ de cajas de Jordan)}$$

 $rg(A-2I)^3 = 5 \implies dim(ker(A-2I)^3) = 8-5 = 3 \implies dimV_3 = 3$

Ahora la única posibilidad es una única caja de Jordan de dimensión la multiplicidad algebraica (es decir 3)

Así la matriz pedida puede ser:

$$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 \end{pmatrix}$$

(Examen final, septiembre 2003)

XII.— Encontrar una matriz A, 7×7 y de elementos reales, tal que

$$rango(A) = 4$$
, $A^4 = \Omega$, $A^3 \neq \Omega$.

Lo más sencillo es construir A de manera que sea una determinada forma de Jordan. Veamos la información que nos dan:

- rango(A) = 4 significa que $dim(ker(A 0 \cdot I)) = 7 4 = 3$ y por tanto hay tres cajas de Jordan relativas al autovalor 0.
- $A^4 = \Omega$ significa que $dim(ker(A 0 \cdot I)^4) = 7$. Significa que el autovalor 0 tiene multiplicidad al menos 7. Como la matriz es 7-dimensional. Tiene multiplicidad exactamente 7.
- $A^3 \neq \Omega$ significa que $dim(ker(A 0 \cdot I)^3) \leq 6$.

Deducimos que hay tres cajas de Jordan relativas al autovalor 0. Además de los dos últimos factores, se deduce que una de ellas tiene dimensión 4. La única posibilidad es por tanto es la configuración:

Es decir cajas de dimensiones 4, 2 y 1:

(Primer parcial, febrero 2000)

XIII.— Encontrar una matriz real A de dimensión 6 que verifique las condiciones siguientes:

$$\dim \operatorname{Ker} A = 2$$
, $\dim \operatorname{Ker} A^2 = 4$, $\operatorname{rg}(A - I) = 4$.

Buscaremos A como matriz de Jordan. Interpretemos las condiciones que se le piden:

- dim Ker A = 2, quiere decir que hay dos cajas de Jorfan relativas al autovalor 0.
- dim $\operatorname{Ker} A^2 = 4$, quiere decir que la caja relativa al autovalor 0 al menos tiene dimensión 4. En concreto al menos hay dos cajas de dimensión 2.
- $\operatorname{rg}(A-I)=4$, quiere decir que $\dim(\operatorname{Ker}(A-I))=6-4=2$. Y por tanto hay dos cajas relativas al autovalor 1.

Combinando estos factores, concluimos que A puede tomarse de la forma:

(Examen extraordinario, septiembre 1999)

XIV.— Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ el endomorfismo dado por

$$f(x, y, z) = ((\alpha - 1)x + \alpha y + (\alpha - 2)z, \ x + y + z, \ x - \alpha y + 2z)$$

(a) Hallar los valores de α para los que f es un endomorfismo diagonalizable; para esos valores, encontrar una base de vectores característicos.

La matriz asociada a f respecto a la base canónica es:

$$A = \begin{pmatrix} \alpha - 1 & \alpha & \alpha - 2 \\ 1 & 1 & 1 \\ 1 & -\alpha & 2 \end{pmatrix}$$

Calculamos los autovalores:

$$det(A - \lambda I) = \begin{vmatrix} \alpha - 1 - \lambda & \alpha & \alpha - 2 \\ 1 & 1 - \lambda & 1 \\ 1 & -\alpha & 2 - \lambda \end{vmatrix} = \begin{vmatrix} 1 - \lambda & \alpha & \alpha - 2 \\ 0 & 1 - \lambda & 1 \\ -1 + \lambda & -\alpha & 2 - \lambda \end{vmatrix} =$$

$$= (1 - \lambda) \begin{vmatrix} 1 & \alpha & \alpha - 2 \\ 0 & 1 - \lambda & 1 \\ -1 & -\alpha & 2 - \lambda \end{vmatrix} = (1 - \lambda) \begin{vmatrix} 1 & \alpha & \alpha - 2 \\ 0 & 1 - \lambda & 1 \\ 0 & 0 & \alpha - \lambda \end{vmatrix} =$$

$$= (1 - \lambda)^{2}(\alpha - \lambda)$$

Para que sea diagonalizable se tiene que cumplir:

- $\alpha = 1$ y la multiplicidad geométrica de $\lambda = 1$ es 3, o bien,
- $\alpha \neq 1$ y la multiplicidad geométrica de $\lambda = 1$ es 2.

Pero:

$$A - I = \begin{pmatrix} \alpha - 2 & \alpha & \alpha - 2 \\ 1 & 0 & 1 \\ 1 & -\alpha & 1 \end{pmatrix}$$

Vemos que tiene rango 2 si $\alpha \neq 0$ y rango 1 si $\alpha = 0$.

Por tanto:

- Si $\alpha \neq 0$, la multiplicidad geométrica es dim(ker(A-I)) = 3 rango(A-I) = 1 y no es diagonalizable.
- Si $\alpha=0$, y la multiplicidad geométrica es dim(ker(A-I))=3-rango(A-I)=2 y es diagonalizable. Calculemos los autovectores cuando $\alpha=0$:
- Asociados a 1:

$$(A-I)\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \iff \begin{pmatrix} -2 & 0 & -2 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \implies x+z=0$$

Luego:

$$S_1 = \mathcal{L}\{(1,0,-1),(0,1,0)\}$$

- Asociados al 0:

$$A\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \iff \begin{pmatrix} -1 & 0 & -2 \\ 1 & 1 & 1 \\ 1 & 0 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \iff \begin{cases} -x - 2z = 0 \\ x + y + z = 0 \end{cases}$$

Luego:

$$S_0 = \mathcal{L}\{(2, -1, -1)\}$$

Una base de autovectores es:

$$\{(1,0,-1),(0,1,0),(2,-1,-1)\}$$

•

(b) Hallar el valor de α para que f tenga un autovalor triple. Encontrar la forma canónica de Jordan y una base asociada.

Vimos que $\lambda = 1$ es un autovalor triple si $\alpha = 1$. Además en ese caso la multiplicidad geométrica vimos que era 1. Por tanto hay una única caja de Jordan:

$$J = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Para calcular una base asociada tomamos un vector $\vec{v}_3 \in ker(A-I)^3$ que no esté en $ker(A-I)^2$. Tenemos:

$$(A-I)^2 = \begin{pmatrix} 1 & 0 & 1\\ 0 & 0 & 0\\ -1 & 0 & -1 \end{pmatrix}$$

Observamos que $ker(A-I)^3 = \mathbb{R}^3$. Podemos tomar entonces $\vec{v}_3 = (1,0,0)$. Ahora la base está formada por los vectores:

$$\{(A-I)^2\vec{v}_3, (A-I)\vec{v}_3, \vec{v}_3\} = \{(1,0,-1), (-1,1,1), (1,0,0)\}$$

(Examen extraordinario, septiembre 2004)

 \mathbf{XV} - Sea $\mathcal{P}_2(x)$ el espacio vectorial de polinomios en x de grado menor o igual que 2 con coeficientes reales. Consideramos la aplicación:

$$f: \mathcal{P}_2(x) \longrightarrow \mathcal{P}_2(x); \qquad f(p(x)) = p(x) - p'(x)$$

Se pide:

(a) Probar que es un endomorfismo.

Un endomorfismo es una aplicación lineal dentro del mismo espacio vectorial. En este caso únicamente hay que verificar que f es lineal.

Sean $p(x), q(x) \in \mathcal{P}_2(x)$ y $\lambda, \mu \in \mathbb{R}$ hay que comprobar que

$$f(\lambda p(x) + \mu q(x)) = \lambda f(p(x)) + \mu f(q(x)).$$

Pero:

$$f(\lambda p(x) + \mu q(x)) = (\lambda p(x) + \mu q(x)) - (\lambda p(x) + \mu q(x))' =$$

$$= \lambda p(x) + \mu q(x) - \lambda p'(x) - \mu q'(x) =$$

$$= \lambda (p(x) - p'(x)) + \mu (q(x) - q'(x)) = \lambda f(p(x)) + \mu f(q(x))$$

(b) Escribir la matriz asociada a f con respecto a la base canónica de $\mathcal{P}_2(x)$.

La base canónica de $\mathcal{P}_2(x)$ está formada por los polinomios $\{1, x, x^2\}$. Calculamos sus imágenes por f, y escribimos sus coordenadas en dicha base

$$\begin{array}{ccccc} 1 & \longrightarrow & 1-0=1 & \equiv & (1,0,0) \\ x & \longrightarrow & x-1 & \equiv & (-1,1,0) \\ x^2 & \longrightarrow & x^2-2x & \equiv & (0,-2,1) \end{array}$$

Por tanto la matriz pedida es:

$$F_{CC} = F = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}$$

(c) Calcular sus autovalores y sus autovectores.

Para calcular los autovalores primero hallamos el polinomio característico:

$$p_F(\lambda) = det(F - \lambda I) = (1 - \lambda)^3$$

Deducimos que hay un único autovalor $\lambda_1 = 1$ con multiplicidad algebraica 3.

Calculemos su espacio de autovectores asociado. Denotamos por (a, b, c) a las coordenadaas de un polinomio en la base canónica:

$$\begin{split} S_{\lambda_1} = & \{(a,b,c) \in \mathcal{P}_2(x) | (F - Id) \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \} = \\ = & \{(a,b,c) \in \mathcal{P}_2(x) | -b = 0; \quad -2c = 0 \} = \\ = & \mathcal{L}\{(1,0,0)\} \end{split}$$

(d) Si f es triangularizable, calcular su forma de Jordan y la base en la que se expresa.

Observamos que f es triangularizable, por que la multiplicidad algebraica del único autovalor coincide con la dimensión del espacio sobre el cual trabajamos. Además la dimensión geométrica de dicho

autovalor hemos visto que es $dim(S_{\lambda_1})=1$. Por tanto hay una única caja de Jordan asociada al autovalor. La forma de Jordan será:

$$J = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Caclulemos la base en la que se f tiene a J por matriz asociada. Llamamos $V_i = ker(F - \lambda I)^i$. Tenemos

$$V_1 \subset V_2 \subset V_3$$

Para formar la base escogeremos un vector $\bar{v}_3 \in V_3$ que no esté en V_2 . De esta forma la base buscada vendrá dada por:

$$\{(F-I)^2\bar{v}_3, (F-I)\bar{v}_3, \bar{v}_3\}$$

Se tiene:

$$(F-I) = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & -2 \\ 0 & 0 & 0 \end{pmatrix}; \qquad (F-I)^2 = \begin{pmatrix} 0 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \qquad (F-I)^3 = \Omega$$

Podemos tomar entonces $\bar{v}_3 = (0,0,1)$ y la base pedida será:

$$\{(2,0,0),(0,-2,0),(0,0,1)\}$$

o expresada como polinomios:

$$\{2, -2x, x^2\}$$

(e) Describir, si es posible, la aplicación inversa de f.

La matriz de F en la base canónica tiene rango 3, luego f es inversible. Para describir la aplicación inversa basta dar su matriz asociada con respecto a una base. La matriz asociada a $g = f^{-1}$ con respecto a las bases canónicas es la inversa de la matriz de f, es decir:

$$G_{CC} = F_{CC}^{-1} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

XVI.— Sea $A \in M_{2\times 2}(\mathbb{R})$. Se sabe que A^2 es semejante a $\begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}$ y traza(A) = 1.

a) Hallar los autovalores de A.

Observamos que si λ es autovalor de A entonces λ^2 es autovalor de A^2 va que:

$$Au = \lambda u \implies A^2u = A(Au) = A(\lambda u) = \lambda Au = \lambda^2 u.$$

Por tanto los posibles autovaloes de A son las raíces cuadradadas de los autovalores de A^2 que claramente son 1 y 4. Los posibles autovalores son entonces:

$$1, -1, 2, -2.$$

Además la traza de la matriz coincide con la suma de sus autovalores. Concluimos que éstos son 2 y $_{-1}$

b) ¿Es A diagonalizable por semejanza?.

Si lo es porque tiene todos sus autovalores reales y además con multiplicidad algebraica uno (con lo que necesariamente coincide con la multiplicidad geométrica).